创设问题情境.引入新课 用FLASH课件动画演示本章的章头图.提出问题.问题从左到右分层次出现: [问题1]在直角三角形中.知道一边和一个锐角.你能求出其他的边和角吗? [问题2]随着改革开放的深入.上海的城市建设正日新月异地发展.幢幢大楼拔地而起.70年代位于南京西路的国际饭店还一直是上海最高的大厦.但经过多少年的城市发展.“上海最高大厦 的桂冠早已被其他高楼取代.你们知道目前上海最高的大厦叫什么名字吗?你能应用数学知识和适当的途径得到金茂大厦的实际高度吗? 通过本章的学习.相信大家一定能够解决. 这节课.我们就先从梯子的倾斜程度谈起.(板书课题§1.1.1从梯子的倾斜程度谈起). Ⅱ.讲授新课 用多媒体演示如下内容: [师]梯子是我们日常生活中常见的物体.我们经常听人们说这个梯子放的“陡 .那个梯子放的“平缓 .人们是如何判断的?“陡 或“平缓 是用来描述梯子什么的?请同学们看下图.并回答问题 (1)在图中.梯子AB和EF哪个更陡?你是怎样判断的?你有几种判断方法? [生]梯子AB比梯子EF更陡. [师]你是如何判断的? [生]从图中很容易发现∠ABC>∠EFD.所以梯子AB比梯子EF陡. [生]我觉得是因为AC=ED.所以只要比较BC.FD的长度即可知哪个梯子陡.BC<FD.所以梯子AB比梯子EF陡. [师]我们再来看一个问题 (2)在下图中.梯子AB和EF哪个更陡?你是怎样判断的? [师]我们观察上图直观判断梯子的倾斜程度.即哪一个更陡.就比较困难了.能不能从第(1)问中得到什么启示呢? [生]在第(1)问的图形中梯子的垂直高度即AC和ED是相等的.而水平宽度BC和FD不一样长.由此我想到梯子的垂直高度与水平宽度的比值越大.梯子应该越陡. [师]这位同学的想法很好.的确如此.在第(2)问的图中.哪个梯子更陡.应该从梯子 AB和EF的垂直高度和水平宽度的比的大小来判断.那么请同学们算一下梯子AB和EF哪一个更陡呢? [生], . ∵, ∴梯子EF比梯子AB更陡. 多媒体演示: 想一想 如图.小明想通过测量B1C1:及AC1.算出它们的比.来说明梯子的倾斜程度,而小亮则认为.通过测量B2C2及AC2.算出它们的比.也能说明梯子的倾斜程度.你同意小亮的看法吗? (1)直角三角形AB1C1和直角三角形AB2C2有什么关系? (2)和有什么关系? (3)如果改变B2在梯子上的位置呢?由此你能得出什么结论? [师]我们已经知道可以用梯子的垂直高度和水平宽度的比描述梯子的倾斜程度.即用倾斜角的对边与邻边的比来描述梯子的倾斜程度.下面请同学们思考上面的三个问题.再来讨论小明和小亮的做法. [生]在上图中.我们可以知道Rt△AB1C1.和Rt△AB2C2是相似的.因为∠B2C2A=∠B1C1A=90°.∠B2AC2=∠B1AC1.根据相似的条件.得Rt△AB1C1∽Rt△AB2C2. [生]由图还可知:B2C2⊥AC2.B1C1⊥AC1.得 B2C2//B1C1.Rt△AB1C1∽Rt△AB2C2. [生]相似三角形的对应边成比例.得 . 如果改变B2在梯子上的位置.总可以得到Rt△B2C2A∽Rt△Rt△B1C1A.仍能得到因此.无论B2在梯子的什么位置. 总成立. [师]也就是说无论B2在梯子的什么位置.∠A的对边与邻边的比值是不会改变的. 现在如果改变∠A的大小.∠A的对边与邻边的比值会改变吗? [生]∠A的大小改变.∠A的对边与邻边的比值会改变. [师]你又能得出什么结论呢? [生]∠A的对边与邻边的比只与∠A的大小有关系.而与它所在直角三角形的大小无关.也就是说.当直角三角形中的一个锐角确定以后.它的对边与邻边之比也随之确定. [师]这位同学回答得很棒.现在我们再返回去看一下小明和小亮的做法.你作何评价? [生]小明和小亮的做法都可以说明梯子的倾斜程度.因为图中直角三角形中的锐角A是确定的.因此它的对边与邻边的比值也是唯一确定的.与B1.B2在梯子上的位置无 关.即与直角三角形的大小无关. [生]但我觉得小亮的做法更实际.因为要测量B1C1的长度.需攀到梯子的最高端.危险并且复杂.而小亮只需站在地面就可以完成. [师]这位同学能将数学和实际生活紧密地联系在一起.值得提倡.我们学习数学就是为了更好地应用数学. 由于直角三角形中的锐角A确定以后.它的对边与邻边之比也随之确定.因此我们有如下定义: 如图.在Rt△ABC中.如果锐角A确定.那么∠A的对边与邻边之比便随之确定. 这个比叫做∠A的正切.记作tanA.即 tanA= . 注意: 查看更多

 

题目列表(包括答案和解析)

(2013•天津)如图,是一对变量满足的函数关系的图象,有下列3个不同的问题情境:
①小明骑车以400米/分的速度匀速骑了5分,在原地休息了4分,然后以500米/分的速度匀速骑回出发地,设时间为x分,离出发地的距离为y千米;
②有一个容积为6升的开口空桶,小亮以1.2升/分的速度匀速向这个空桶注水,注5分后停止,等4分后,再以2升/分的速度匀速倒空桶中的水,设时间为x分,桶内的水量为y升;
③矩形ABCD中,AB=4,BC=3,动点P从点A出发,依次沿对角线AC、边CD、边DA运动至点A停止,设点P的运动路程为x,当点P与点A不重合时,y=S△ABP;当点P与点A重合时,y=0.
其中,符合图中所示函数关系的问题情境的个数为(  )

查看答案和解析>>

11、为了了解“新课标”实施后学生的课业负担情况,某部门调查了一所学校七年级学生一周参加课外体育活动的时间,其中考察的对象是(  )

查看答案和解析>>

(2013•益阳)实施新课改以来,某班学生经常采用“小组合作学习”的方式进行学习,学习委员小兵每周对各小组合作学习的情况进行了综合评分.下表是其中一周的统计数据:
组 别 1 2 3 4 5 6 7
分 值 90 95 90 88 90 92 85
这组数据的中位数和众数分别是(  )

查看答案和解析>>

(2012•双柏县二模)今年是我云南省实施新课改后的首次高考,报名总人数达21.1万人,是全省高考报名持续10年增长后首次下降.21.1万用科学记数法表示这个数,结果正确的是(  )

查看答案和解析>>

(2013•红河州模拟)今年是我云南省实施新课改后的首次高考,报名总人数达21万人,是全省高考报名持续10年增长后首次下降,21万用科学记数法表示这个数,结果正确的是(  )

查看答案和解析>>


同步练习册答案