证明过程: 已知:∠A=∠D,∠B=∠E,BC=EF 求证:△ABC≌△DEF 证明:∵∠A+∠B+∠C=180°. ∠D+∠E+∠F=180° (三角形内角和等于180°) ∴∠C=180°- ∠F=180°- 又∵∠A=∠D,∠B=∠E ∴∠C=∠F 又∵BC=EF ∴△ABC≌△DEF(ASA) 推论 等腰三角形的顶角的平分线.底边上的中线.底边上的高互相重合. 随堂练习: 做教科书第4页第1.2题. 课堂小结: 通过这节课的学习你学到了什么知识? 作业:1.基础作业:P5页习题1.1 1.2. 查看更多

 

题目列表(包括答案和解析)

填空,完成下列证明过程.
如图,△ABC中,∠B=∠C,D,E,F分别在AB,BC,AC上,且BD=CE,∠DEF=∠B
求证:ED=EF.
证明:∵∠DEC=∠B+∠BDE
三角形的一个外角等于与它不相邻两个内角的和
三角形的一个外角等于与它不相邻两个内角的和

又∵∠DEF=∠B(已知),∴∠
BDE
BDE
=∠
CEF
CEF
(等式性质).
在△EBD与△FCE中,
BDE
BDE
=∠
CEF
CEF
(已证),
BD
BD
=
CE
CE
(已知),∠B=∠C(已知),
∴△EBD≌△FCE
ASA
ASA

∴ED=EF
全等三角形对应边相等
全等三角形对应边相等

查看答案和解析>>

填空,完成下列证明过程.
如图,△ABC中,∠B=∠C,D,E,F分别在AB,BC,AC上,且BD=CE,∠DEF=∠B
求证:ED=EF.
证明:∵∠DEC=∠B+∠BDE________,
又∵∠DEF=∠B(已知),∴∠________=∠________(等式性质).
在△EBD与△FCE中,
∠________=∠________(已证),________=________(已知),∠B=∠C(已知),
∴△EBD≌△FCE________.
∴ED=EF________.

查看答案和解析>>

如图,在△ABC中,已知AB=AC=5,BC=6,且△ABC≌△DEF,将△DEF与△ABC重合在一起,△ABC不动,△ABC不动,△DEF运动,并满足:点E在边BC上沿B到C的方向运动,且DE、始终经过点A,EF与AC交于M点。
(1)求证:△ABE∽△ECM;
(2)探究:在△DEF运动过程中,重叠部分能否构成等腰三角形?若能,求出BE的长;若不能,请说明理由;
(3)当线段AM最短时,求重叠部分的面积。

查看答案和解析>>

如图,在△ABC中,已知AB=AC=5,BC=6,且△ABC≌△DEF,将△DEF与△ABC重合在一起,△ABC不动,△ABC不动,△DEF运动,并满足:点E在边BC上沿B到C的方向运动,且DE、始终经过点A,EF与AC交于M点.

(1)求证:△ABE∽△ECM;

(2)探究:在△DEF运动过程中,重叠部分能否构成等腰三角形?若能,求出BE的长;若不能,请说明理由;

(3)当线段AM最短时,求重叠部分的面积.

查看答案和解析>>

如图,在△ABC中,已知AB=AC=5,BC=6,且△ABC≌△DEF,将△DEF与△ABC重合在一起,△ABC不动,△ABC不动,△DEF运动,并满足:点E在边BC上沿B到C的方向运动,且DE、始终经过点A,EF与AC交于M点.

(1)求证:△ABE∽△ECM;

(2)探究:在△DEF运动过程中,重叠部分能否构成等腰三角形?若能,求出BE的长;若不能,请说明理由;

(3)当线段AM最短时,求重叠部分的面积.

 


查看答案和解析>>


同步练习册答案