你能证明它们吗(二) 教学目标: 知识与技能目标: 掌握证明的基本思路和书写格式. 过程与方法目标: 经历观察--探索--发现的过程.能运用综合法证明等腰三角形判定定理. 情感态度与价值观目标: 查看更多

 

题目列表(包括答案和解析)

善于学习的小敏查资料知道:对应角相等,对应边成比例的两个梯形,叫做相似梯形.他想到“平行于三角形一边的直线和其他两边相交,所构成的三角形与原三角形相似”,提出如下两个问题,你能帮助解决吗?
问题一:平行于梯形底边的直线截两腰所得的小梯形和原梯形是否相似?
(1)从特殊情形入手探究.假设梯形ABCD中,AD∥BC,AB=6,BC=8,CD=4,AD=2,MN是中位线(如图①).根据相似梯形的定义,请你说明梯形AMND与梯形ABCD是否相似;
(2)一般结论:平行于梯形底边的直线截两腰所得的梯形与原梯形
 
;(填“相似”或“不相似”或“相似性无法确定”.不要求证明)
问题二:平行于梯形底边的直线截两腰所得的两个小梯形是否相似?
(1)从特殊平行线入手探究.梯形的中位线截两腰所得的两个小梯形
 
;(填“相似”或“不相似”或“相似性无法确定”.不要求证明)
(2)从特殊梯形入手探究.同上假设,梯形ABCD中,AD∥BC,AB=6,BC=8,CD=4,AD=2,你能找到与梯形底边平行的直线PQ(点P,Q在梯形的两腰上,如图②),使得梯形APQD与梯形PBCQ相似吗?请根据相似梯形的定义说明理由;
(3)一般结论:对于任意梯形(如图③),一定
 
(填“存在”或“不存在”)平行于梯形底边的直线PQ,使截得的两个小梯形相似.若存在,则确定这条平行线位置的条件是
APPB
=
 
.(不妨设AD=a,BC=b,AB=c,CD=d.不要求证明)
精英家教网

查看答案和解析>>

已知:梯形ABCD中,AD∥BC,∠ABC=60°且BC=8,梯形ABCD绕点A顺时针旋转a度后得到梯形AEFG,a为锐角.
(1)如图一,旋转过程中,若线段AB与线段EF始终有交点,求a的范围;
(2)如图二,若B点落在线段EF上,小刚同学用三角板量得F、G和D三点在同一条直线上,由此,他得到四边形ABFG是平行四边形,你能证明吗?请写出理由;
(3)小刚最后又发现中的平行四边形ABFG是菱形,请求出梯形ABCD的面积.
精英家教网

查看答案和解析>>

28、小丽剪了一些直角三角形纸片,她取出其中的几张进行了如下的操作:
操作一:如图1,将Rt△ABC沿某条直线折叠,使斜边的两个端点A与B重合,折痕为DE.
(1)如果AC=6cm,BC=8cm,试求△ACD的周长.
(2)如果∠CAD:∠BAD=4:7,求∠B的度数.
操作二:如图2,小丽拿出另一张Rt△ABC纸片,将直角边AC沿直线AD折叠,使它落在斜边AB上,且与AE重合,已知两直角边AC=4cm,BC=8cm,你能求出CD的长吗?
操作三:如图3,小丽又拿出另一张Rt△ABC纸片,将纸片折叠,折痕CD⊥AB.你能证明:BC2+AD2=AC2+BD2吗?

查看答案和解析>>

善于学习的小敏查资料知道:对应角相等,对应边成比例的两个梯形,叫做相似梯形.他想到“平行于三角形一边的直线和其他两边相交,所构成的三角形与原三角形相似”,提出如下两个问题,你能帮助解决吗?
问题一:平行于梯形底边的直线截两腰所得的小梯形和原梯形是否相似?
(1)从特殊情形入手探究.假设梯形ABCD中,AD∥BC,AB=6,BC=8,CD=4,AD=2,MN是中位线(如图①).根据相似梯形的定义,请你说明梯形AMND与梯形ABCD是否相似;
(2)一般结论:平行于梯形底边的直线截两腰所得的梯形与原梯形______;(填“相似”或“不相似”或“相似性无法确定”.不要求证明)
问题二:平行于梯形底边的直线截两腰所得的两个小梯形是否相似?
(1)从特殊平行线入手探究.梯形的中位线截两腰所得的两个小梯形______;(填“相似”或“不相似”或“相似性无法确定”.不要求证明)
(2)从特殊梯形入手探究.同上假设,梯形ABCD中,AD∥BC,AB=6,BC=8,CD=4,AD=2,你能找到与梯形底边平行的直线PQ(点P,Q在梯形的两腰上,如图②),使得梯形APQD与梯形PBCQ相似吗?请根据相似梯形的定义说明理由;
(3)一般结论:对于任意梯形(如图③),一定______(填“存在”或“不存在”)平行于梯形底边的直线PQ,使截得的两个小梯形相似.若存在,则确定这条平行线位置的条件是=______

查看答案和解析>>

善于学习的小敏查资料知道:对应角相等,对应边成比例的两个梯形,叫做相似梯形.他想到“平行于三角形一边的直线和其他两边相交,所构成的三角形与原三角形相似”,提出如下两个问题,你能帮助解决吗?
问题一:平行于梯形底边的直线截两腰所得的小梯形和原梯形是否相似?
(1)从特殊情形入手探究.假设梯形ABCD中,AD∥BC,AB=6,BC=8,CD=4,AD=2,MN是中位线(如图①).根据相似梯形的定义,请你说明梯形AMND与梯形ABCD是否相似;
(2)一般结论:平行于梯形底边的直线截两腰所得的梯形与原梯形______;(填“相似”或“不相似”或“相似性无法确定”.不要求证明)
问题二:平行于梯形底边的直线截两腰所得的两个小梯形是否相似?
(1)从特殊平行线入手探究.梯形的中位线截两腰所得的两个小梯形______;(填“相似”或“不相似”或“相似性无法确定”.不要求证明)
(2)从特殊梯形入手探究.同上假设,梯形ABCD中,AD∥BC,AB=6,BC=8,CD=4,AD=2,你能找到与梯形底边平行的直线PQ(点P,Q在梯形的两腰上,如图②),使得梯形APQD与梯形PBCQ相似吗?请根据相似梯形的定义说明理由;
(3)一般结论:对于任意梯形(如图③),一定______(填“存在”或“不存在”)平行于梯形底边的直线PQ,使截得的两个小梯形相似.若存在,则确定这条平行线位置的条件是=______

查看答案和解析>>


同步练习册答案