2.难点:寻找证明的思路.选择证明的方法. 查看更多

 

题目列表(包括答案和解析)

11、我们在探索平面图形性质时,往往通过剪拼的方式帮助我们寻找解题思路,例如,在证明三角形中位线性质定理时,就采用了图1的剪拼方式,将三角形转化为平行四边形使问题得以解决,请你仿照1的方法,在图2和图3中,分别只剪拼一次,实现下列转化:
(1)将平行四边形转化为矩形;(2)将梯形转化为三角形.
要求:选择其中一个图形,用尺规作出剪切线,保留痕迹,不写作法、其他画图,工具不限.

查看答案和解析>>

(2005•襄阳)我们在探索平面图形性质时,往往通过剪拼的方式帮助我们寻找解题思路,例如,在证明三角形中位线性质定理时,就采用了图1的剪拼方式,将三角形转化为平行四边形使问题得以解决,请你仿照1的方法,在图2和图3中,分别只剪拼一次,实现下列转化:
(1)将平行四边形转化为矩形;(2)将梯形转化为三角形.
要求:选择其中一个图形,用尺规作出剪切线,保留痕迹,不写作法、其他画图,工具不限.

查看答案和解析>>

(2005•襄阳)我们在探索平面图形性质时,往往通过剪拼的方式帮助我们寻找解题思路,例如,在证明三角形中位线性质定理时,就采用了图1的剪拼方式,将三角形转化为平行四边形使问题得以解决,请你仿照1的方法,在图2和图3中,分别只剪拼一次,实现下列转化:
(1)将平行四边形转化为矩形;(2)将梯形转化为三角形.
要求:选择其中一个图形,用尺规作出剪切线,保留痕迹,不写作法、其他画图,工具不限.

查看答案和解析>>

我们在探索平面图形性质时,往往通过剪拼的方式帮助我们寻找解题思路,例如,在证明三角形中位线性质定理时,就采用了图1的剪拼方式,将三角形转化为平行四边形使问题得以解决,请你仿照1的方法,在图2和图3中,分别只剪拼一次,实现下列转化:
(1)将平行四边形转化为矩形;(2)将梯形转化为三角形.
要求:选择其中一个图形,用尺规作出剪切线,保留痕迹,不写作法、其他画图,工具不限.

查看答案和解析>>

(1)如图1,在正方形ABCD中,M是BC边(不含端点B、C)上任意一点,P是BC延长线上一点,N是∠DCP的平分线上一点.若∠AMN=90°,求证:AM=MN.
下面给出一种证明的思路,你可以按这一思路证明,也可以选择另外的方法证明.
证明:在边AB上截取AE=MC,连ME.
正方形ABCD中,∠B=∠BCD=90°,AB=BC.
∴∠NMC=180°-∠AMN-∠AMB=180°-∠B-∠AMB=∠MAB=∠MAE.
(下面请你完成余下的证明过程)
(2)若将(1)中的“正方形ABCD”改为“正三角形ABC”(如图2),精英家教网N是∠ACP的平分线上一点,则当∠AMN=60°时,结论AM=MN是否还成立?请说明理由.

查看答案和解析>>


同步练习册答案