§1.1.你能证明它们吗(三) 有一个角等于60°的等腰三角形 在直角三角形中.如果一个锐角等于30°. 是等边三角形. 那么它所对的直角边等于斜边的一半. 查看更多

 

题目列表(包括答案和解析)

我们知道“在三角形每一顶点处各取一个外角,它们的和就是这个三角形的外角和”.如图7-36,完成下列问题.

图7-36

(1)你能求出三角形的外角和等于多少吗?证明你的结论.

(2)如果将三角形三条边都向两边延长,并在每两条延长线上任取两点连结起来,那么在原三角形外又得到三个新三角形,如图所示,猜想∠A、∠B、∠C、∠D、∠E、∠F的和是多少?

(3)请用(1)的结论证明(2)的猜想.

(4)对于(2)的证明你还有其他的方法吗?请写出来与同伴交流.

查看答案和解析>>

我们知道“在三角形每一顶点处各取一个外角,它们的和就是这个三角形的外角和”.如图7-36,完成下列问题.

图7-36

(1)你能求出三角形的外角和等于多少吗?证明你的结论.

(2)如果将三角形三条边都向两边延长,并在每两条延长线上任取两点连结起来,那么在原三角形外又得到三个新三角形,如图所示,猜想∠A、∠B、∠C、∠D、∠E、∠F的和是多少?

(3)请用(1)的结论证明(2)的猜想.

(4)对于(2)的证明你还有其他的方法吗?请写出来与同伴交流.

查看答案和解析>>

(2004山东青岛)四边形是大家熟悉的图形,我们已经发现了它的许多性质.只要善于观察、乐于探索,我们还会有更多的结论.

(1)四边形一条对角线上任意一点与另外两个顶点的连线,将四边形分成四个三角形(图a),其中相对的两对三角形的面积之积相等.你能证明这个结论吗?试试看.

已知:在四边形ABCD中,O是对角线BD上任意一点(如图a),求证:

(2)在三角形中(图b),你能否归纳出类似的结论?若能,写出你猜想的结论,并证明;若不能,说明理由.

查看答案和解析>>

如图①,将两个等腰直角三角形叠放在一起,使上面三角板的一个锐角顶点与下面三角板的直角顶点重合,并将上面的三角板绕着这个顶点逆时针旋转,在旋转过程中,当下面三角板的斜边被分成三条线段时,我们来研究这三条线段之间的关系.
(1)实验与操作:
如图②,如果上面三角板的一条直角边旋转到CM的位置时,它的斜边恰好旋转到CN的位置,请在网格中分别画出以AM、MN和NB为边长的正方形,观察这三个正方形的面积之间的关系;
(2)猜想与探究:
如图③,在Rt△ABC中,BC=AC,∠ACB=90°,M、N是AB边上的点,∠MCN=45°,作DA⊥AB于点A,截取DA=NB,并连接DC、DM.
我们来证明线段CD与线段CN相等.
∵∠CAB=∠CBA=45°,又DA⊥AB于点A,
∴∠DAC=45°,∴∠DAC=∠CBA,
又∵DA=NB,BC=AC,
∴△CAD≌△CBN.
∴CD=CN.

请你继续解答:
①线段MD与线段MN相等吗?为什么?
②线段AM、MN、NB有怎样的数量关系,为什么?
(3)拓广与运用:
如图④,已知线段AB上任意一点M(AM<MB),是否总能在线段MB上找到一点N,使得分别以AM与BN为边长的正方形的面积的和等于以MN为边长的正方形的面积?若能,请在图④中画出点N的位置,并简要说明作法;若不能,请说明理由.

查看答案和解析>>

如图①,将两个等腰直角三角形叠放在一起,使上面三角板的一个锐角顶点与下面三角板的直角顶点重合,并将上面的三角板绕着这个顶点逆时针旋转,在旋转过程中,当下面三角板的斜边被分成三条线段时,我们来研究这三条线段之间的关系.
(1)实验与操作:
如图②,如果上面三角板的一条直角边旋转到CM的位置时,它的斜边恰好旋转到CN的位置,请在网格中分别画出以AM、MN和NB为边长的正方形,观察这三个正方形的面积之间的关系;
(2)猜想与探究:
如图③,在Rt△ABC中,BC=AC,∠ACB=90°,M、N是AB边上的点,∠MCN=45°,作DA⊥AB于点A,截取DA=NB,并连接DC、DM.
我们来证明线段CD与线段CN相等.
∵∠CAB=∠CBA=45°,又DA⊥AB于点A,
∴∠DAC=45°,∴∠DAC=∠CBA,
又∵DA=NB,BC=AC,
∴△CAD≌△CBN.
∴CD=CN.

请你继续解答:
①线段MD与线段MN相等吗?为什么?
②线段AM、MN、NB有怎样的数量关系,为什么?
(3)拓广与运用:
如图④,已知线段AB上任意一点M(AM<MB),是否总能在线段MB上找到一点N,使得分别以AM与BN为边长的正方形的面积的和等于以MN为边长的正方形的面积?若能,请在图④中画出点N的位置,并简要说明作法;若不能,请说明理由.

查看答案和解析>>


同步练习册答案