题目列表(包括答案和解析)
3 |
7 |
个点,那么这两个三角形叫做位似三角形,它们的相似比又称为位似比,这个点叫做
位似中心。利用三角形的位似可以将一个三角形缩小或放大。
(1)选择:如图(1),点O是等边△PQR的中心,P’Q’R’分别是OP、OQ、OR的
中点,则△P’Q’R’与是△PQR是位似三角形,此时,△P’Q’R’与△PQR的位似比,位
似中心分别为 ( )
A. 2,点P B. ,点P C. 2,点O D. ,点O
(2)如图(2),用下面的方法可以画△AOB的内接等边三角形,阅读后证明相应的
问题。画法:①在△AOB内画等边三角形CDE,使点C在OA上,点D在OB上;②
连结OE并延长,交AB于点E’,过点E’作E’C’//EC,交OA于点C’,作E’D’//ED,
交OB于点D’;③连结C’D’,则△C’D’E’是△AOB的内接三角形。
求证:△C’D’E’是等边三角形。
如果两个三角形不仅是相似三角形,而且每组对应点所在的直线都经过同一个点,那么这两个三角形叫做位似三角形,它们的相似比又称为位似比,这个点叫做位似中心.利用三角形的位似可以将一个三角形缩小或放大.
(1)选择:如图,点O是等边三角形PQR的中心,分别是OP、OQ、OR的中点,则△与△PQR是位似三角形.此时,△与△PQR的位似比、位似中心分别为
[ ]
(2)如图,用下面的方法可以画△AOB的内接等边三角形.阅读后证明相应问题.
画法:①在△AOB内画等边三角形CDE,使点C在OA上,点D在OB上;
②连结OE并延长,交AB于点,过点作∥EC,交OA于点,作∥ED,交OB于点;
③连结.则△是△AOB的内接三角形.
求证:△是等边三角形.
1 |
2 |
1 |
2 |
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com