求证:如果一个等腰三角形中有一个角等于60°.那么这个三角形是等边三角形. 查看更多

 

题目列表(包括答案和解析)

一副直角三角板即Rt△ABC和Rt△EDF如图1放置(其中△ABC为等腰直角三角形),E与A重合,D在AB上,DF经过点C,将△EDF绕点D逆时针方向旋转一个角度α至如图2所示。
(1)求证:AE⊥BE;
(2)如图3,连接CE,作DH⊥CE,则线段AE、BE与CH之间有何数量关系?写出关系式并加以证明;
(3)图3中若AB=4,当CH=____时,α=60°。(直接写出结果不用证明)

查看答案和解析>>

操作:如图①,△ABC是正三角形,△BDC是顶角∠BDC=120°的等腰三角形,以D为顶点作一个60°角,角的两边分别交AB、AC边于M、N两点,连接MN。
探究:线段BM、MN、NC之间的关系,并加以证明。
说明:(1)如果你经历反复探索,没有找到解决问题的方法,请你把探索过程中的某种思路写出来(要求至少写3步);
(2)在你经历说明(1)的过程之后,可以从下列①、②中选取一个补充或更换已知条件,完成你的证明。
①AN=NC(如图②);
②DM∥AC(如图③)。
附加题:若点M、N分别是射线AB、CA上的点,其它条件不变,再探线段BM、MN、NC之间的关系,在图④中画出图形,并说明理由。

查看答案和解析>>

操作:如图①,△ABC是正三角形,△BDC是顶角∠BDC120°的等腰三角形,以D为顶点作一个60°角,角的两边分别交ABAC边于MN两点,连接MN

探究:线段BMMNNC之间的关系,并加以证明.

说明:⑴如果你经历反复探索,没有找到解决问题的方法,请你把探索过程中的某种思路写出来(要求至少写3步);⑵在你经历说明⑴的过程之后,可以从下列①、②中选取一个补充或更换已知条件,完成你的证明.

注意:选取①完成证明得10分;选取②完成证明得5分.

(如图②);  ②(如图③).

附加题:若点MN分别是射线ABCA上的点,其它条件不变,再探线段BMMNNC之间的关系,在图④中画出图形,并说明理由.

查看答案和解析>>

操作:如图,△ABC是正三角形,△BDC是顶角∠BDC=120°的等腰三角形,以D为顶点作一个60°角,角的两边分别交AB、AC边于M、N两点,连接MN

探究:线段BM、MN、NC之间的关系,并加以证明.

说明:(1)如果你经历反复探索,没有找到解决问题的方法,请你把探索过程中的某种思路写出来(要求至少写3步);

(2)在你经历说明(1)的过程之后,可以从下列①、②中选取一个补充或更换已知条件,完成你的证明.

注意:选取①完成证明得10分;选取②完成证明得5分.

①AN=NC(如图);

②DM∥AC(如图).

若点M、N分别是射线AB、CA上的点,其它条件不变,再探线段BM、MN、NC之间的关系,在图中画出图形,并说明理由.

查看答案和解析>>

如图(1)是腰长分别是和2的两个等腰直角三角形ABC和CDE叠放在一起(C与C重合).

(1)固定△ABC,将△CDE绕点C顺时针旋转45°得到△CDE,如图(2),若连结BE、  AD,请你判断BE与AD的大小关系,并证明你的结论;

(2)延长CE交AB于K点,将图(2)中的△CDE在线段CK上沿着CK方向以每秒1个单位长度的速度平移,如图(3),将平移后的△CDE设为△PQR,设△PQR移动的时间为x秒,点P运动到K点停止,设△PQR与△AKC重叠的面积为y,求y与x的函数关系式,并写出自变量x的取值范围;

(3)将△DEC按如图(4)固定,将△ABC一锐角顶点B落在斜边ED的中点,然后绕B点逆时针旋转度,使边AB交DC于点M,边BC交EC于点N.

   请你探究:图(4)的DM?EN的值是否随的变化而变化?如果没有变化,请求出DM?EN的值,并说明理由;如果有变化,也请说明理由.

查看答案和解析>>


同步练习册答案