2.进一步掌握推理证明和方法.发展演绎推理能力. 过程与方法目标: 1经历探索.猜测.证明的过程.学会运用本节定理进行证明. 查看更多

 

题目列表(包括答案和解析)

精英家教网【老题重现】
求证:等腰三角形底边上任意一点到两腰的距离和等于一腰上的高.
已知:△ABC中,AB=AC,点P是BC边上任意一点,PE⊥AB于E,PF⊥AC于F,CD是AB边上的高线.
求证:PE+PF=CD
证明:连接AP,
∵S△ABP+S△ACP=S△ABC
AB×PE
2
+
AC×PF
2
=
AB×CD
2

∵AB=AC
∴PE+PF=CD

【变式应用】
请利用“类比”和“化归”两种方法解答下面问题:
求证:等边三角形内上任意一点到三边的距离和等于一边上的高.
已知:点P是等边△ABC内任意一点,PD⊥BC于D,PE⊥AC于E,PF⊥AB于F,AH是BC边上的高线.精英家教网
求证:PD+PE+PF=AH
证明:
方法(一)类比:通过类比上题的思路和方法,模仿上题的“面积法”解决本题.
连接AP,BP,CP
方法(二)化归:如图,通过MN在等边△ABC中构造符合“老题”规律的等边△AMN,化“新题”为“老题”,直接利用“老题重现”的结论解决问题.
过点P作MN∥BC,交AB于M,交AC于N,交AH于G.

【提炼运用】
已知:点P是等边△ABC内任意一点,设到三边的距离分别为a、b、c,且使得以a、b、c为边能够构成三角形.
请在图中画出满足条件的点P一切可能的位置,并对这些位置加以说明.
精英家教网

查看答案和解析>>

阅读材料并解答问题:
我国是最早了解和应用勾股定理的国家之一,古代印度、希腊、阿拉伯等许多国家也都很重视对勾股定理的研究和应用,古希腊数学家毕达哥拉斯首先证明了勾股定理,在西方,勾股定理又称为“毕达哥拉斯定理”.
关于勾股定理的研究还有一个很重要的内容是勾股数组,在《几何》课本中我们已经了解到,“能够成为直角三角形三条边的三个正整数称为勾股数”,以下是毕达哥拉斯等学派研究出的确定勾股数组的两种方法:
方法1:若m为奇数(m≥3),则a=m,b=
1
2
(m2-1)和c=
1
2
(m2+1)是勾股数.
方法2:若任取两个正整数m和n(m>n),则a=m2-n2,b=2mn,c=m2+n2是勾股数.
(1)在以上两种方法中任选一种,证明以a,b,c为边长的△ABC是直角三角形;
(2)请根据方法1和方法2按规律填写下列表格:
精英家教网
(3)某园林管理处要在一块绿地上植树,使之构成如下图所示的图案景观,该图案由四个全等的直角三角形组成,要求每个三角形顶点处都植一棵树,各边上相邻两棵树之间的距离均为1米,如果每个三角形最短边上都植6棵树,且每个三角形的各边长之比为5:12:13,那么这四个直角三角形的边长共需植树
 
棵.
精英家教网

查看答案和解析>>

已知,关于x的不等式ax+b>0(其中a≠0)
(1)当a=2,b=6时,求ax+b>0的解集;
(2)当a=-4,b=10时,求ax+b>0的正整数解;
(3)小明为了进一步掌握解不等式的知识,准备了3张大小完全相同的不透明卡片,正面分别写有整数2,-2,3.把它们放在桌面上,从中任意取两张,将取出的两张卡片上的数分别作为a和b,请你写出使该不等式没有负数解的概率.

查看答案和解析>>

26、老师出了如下的题:
(1)首先,要求你按图1回答以下问题
①若∠DEC+∠ACB=180°,可以得到哪两条线段平行?(2分)
②在①的结论下,如果∠1=∠2,又能得到哪两条线段平行,请说明.(2分)
解:(1)①
DE
BC

GF∥DC


(2)接着,老师另画了一个图2
①要求你在图2中按下面的语言继续画图:(画图工具和方法不限)过A点画AD⊥BC于D,过D点画DE∥AB交AC于E,在线段AB上任取一点F,以F为顶点,FB为一边,画∠BFG=∠ADE,∠BFG的另一边FG与线段BC交于点G.
②请你按照①中画图时给出的条件,完整证明:FG⊥BC.

查看答案和解析>>

如图a,梯形ABCD中,AB∥CD,AB=a,CD=b,点E、F分别是两腰AD、BC上的点,且EF∥AB,设EF到CD、AB的距离分别为d1、d2,某同学在对这一图形进行研究时,发现如下事实:
①当
d1
d2
=
1
1
时,有EF=
a+b
2

d1
d2
=
1
2
时,有EF=
a+2b
3

d1
d2
=
1
3
时,有EF=
a+3b
4

d1
d2
=
1
4
时,有EF=
a+4b
5

②当
d1
d2
=
2
1
时,有EF=
2a+b
3
;当
d1
d2
=
3
1
时,有EF=
3a+b
4

d1
d2
=
4
1
时,有EF=
4a+b
5
;当
d1
d2
=
5
1
时,有EF=
5a+b
6

根据以上结论,解答下列问题:
(1)猜想当
d1
d2
=
1
n
d1
d2
=
m
1
时,分别能得到什么结论(其中m、n均为正整数)?
(2)进一步猜想当
d1
d2
=
m
n
时,有何结论(其中m、n均为正整数)?并证明你的结论;
(3)如图b,有一块梯形耕地ABCD,AB∥CD,CD=100米,AB=300米,AD=500米,在AD上取两点E、F,使DE=200米,EF=150米,分别从E、F两处为起点开挖两条平行于两底的水渠,直到另一腰,求这两条水渠的总长度.
精英家教网

查看答案和解析>>


同步练习册答案