2.了解勾股定理及其逆定理的证明方法. 情感态度与价值观目标: 查看更多

 

题目列表(包括答案和解析)

探索与研究:
中国古代的数学家们不仅很早就发现并应用勾股定理,而且很早就尝试对勾股定理作理论的证明.最早对勾股定理进行证明的,是三国时期吴国的数学家赵爽.赵爽创制了一幅“勾股圆方图”,用形数结合的方法,给出了勾股定理的详细证明.在这幅“勾股圆方图”中,以弦为边长得到正方形ABDE是由4个全等的直角三角形再加上中间的那个小正方形组成的.每个直角三角形的面积为ab/2;中间的小正方形边长为b-a,则面积为(b-a)2.于是便可得如下的式子:
S正方形EFGH=c2=(a-b)2+4×
12
ab
所以a2+b2=c2
(1)你能用下面的图形也来验证一下勾股定理吗?试一试!
(2)你自己还能设计一种方法来验证勾股定理吗?
精英家教网精英家教网

查看答案和解析>>

一个直立的火柴盒在桌面上倒下,启迪人们发现了勾股定理的一种新的证明方法.如图,火柴盒的一个精英家教网侧面ABCD(是一个长方形)倒下到AB′C′D′的位置,连接CC′,设AB=a,BC=b,AC=c.
(1)试用a、b有关的代数式表示梯形BCC′D′的面积;
(2)试用a、b、c有关的代数式分别表示△ABC、△AD′C′、△AC′C的面积;
(3)由(1)和(2)的结论证明勾股定理:a2+b2=c2

查看答案和解析>>

如图,一块四边形的土地,其中∠BAD=90°,AB=4m,BC=12m,CD=13m,AD=3m.
(1)试说明BD⊥BC;(提示:利用“勾股定理”及其逆定理)
(2)求这块土地的面积.

查看答案和解析>>

探索与研究:
中国古代的数学家们不仅很早就发现并应用勾股定理,而且很早就尝试对勾股定理作理论的证明.最早对勾股定理进行证明的,是三国时期吴国的数学家赵爽.赵爽创制了一幅“勾股圆方图”,用形数结合的方法,给出了勾股定理的详细证明.在这幅“勾股圆方图”中,以弦为边长得到正方形ABDE是由4个全等的直角三角形再加上中间的那个小正方形组成的.每个直角三角形的面积为ab/2;中间的小正方形边长为b-a,则面积为(b-a)2.于是便可得如下的式子:
S正方形EFGH=c2=(a-b)2+4×数学公式ab
所以a2+b2=c2
(1)你能用下面的图形也来验证一下勾股定理吗?试一试!
(2)你自己还能设计一种方法来验证勾股定理吗?

查看答案和解析>>

如图,一块四边形的土地,其中∠ADC=90°,AB=4m,BC=12m,CD=13m,AD=3m.
(1)试说明BD⊥BC;(提示:利用“勾股定理”及其逆定理)
(2)求这块土地的面积.

查看答案和解析>>


同步练习册答案