3.关键:把握演绎推理思维.充分运用公理和学过的定理进行论证.对于逆命题问题应通过实际事例让学生验证逆命题的正确性. 教学过程: 议一议: 观察下列三组命题.它们的条件和结论之间有怎样的关系? 如果两个角是对顶角.那么它们相等. 如果两个角相等.那么它们是对顶角. 如果小明患了肺炎.那么他一定会发烧. 如果小明发烧.那么他一定患了肺炎. 三角形中相等的边所对的角相等. 三角形中相等的角所对的边相等. 查看更多

 

题目列表(包括答案和解析)

2、下面关于公理和定理的联系说法不正确的是(  )

查看答案和解析>>

(2013•沈阳)身高1.65米的兵兵在建筑物前放风筝,风筝不小心挂在了树上.在如图所示的平面图形中,矩形CDEF代表建筑物,兵兵位于建筑物前点B处,风筝挂在建筑物上方的树枝点G处(点G在FE的延长线上).经测量,兵兵与建筑物的距离BC=5米,建筑物底部宽FC=7米,风筝所在点G与建筑物顶点D及风筝线在手中的点A在同一条直线上,点A距地面的高度AB=1.4米,风筝线与水平线夹角为37°.
(1)求风筝距地面的高度GF;
(2)在建筑物后面有长5米的梯子MN,梯脚M在距墙3米处固定摆放,通过计算说明:若兵兵充分利用梯子和一根5米长的竹竿能否触到挂在树上的风筝?
(参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75)

查看答案和解析>>

25、下图是2002年8月在北京召开的第24届国际数学家大会会标中的图案,其中四边形ABCD和四边形EFGH都是正方形.
小强看后马上猜出△ABF≌△DAE,并给出以下不完整的推理过程.
请你填空完成推理:
证明:∵四边形ABCD和EFGH都是正方形,
∴AB=DA,∠DAB=90°,∠GFE=∠HEF=90°
∴∠1+∠3=90°,∠AFB=∠DEA=90°,
∴∠2+∠3=90°

在△ABF和△DAE中

∴△ABF≌△DAE(AAS)

查看答案和解析>>

身高1.65米的兵兵在建筑物前放风筝,风筝不小心挂在了树上.在如图所示的平面图形中,矩形CDEF代表建筑物,兵兵位于建筑物前点B处,风筝挂在建筑物上方的树枝点G处(点G在FE的延长线上).经测量,兵兵与建筑物的距离BC=5米,建筑物底部宽FC=7米,风筝所在点G与建筑物顶点D及风筝线在手中的点A在同一条直线上,点A距地面的高度AB=1.4米,风筝线与水平线夹角为37°.

(1)求风筝距地面的高度GF;

(2)在建筑物后面有长5米的梯子MN,梯脚M在距墙3米处固定摆放,通过计算说明:若兵兵充分利用梯子和一根米长的竹竿能否触到挂在树上的风筝?

(参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75)

 

 

查看答案和解析>>

【考点】全等三角形的判定与性质;直角梯形;旋转的性质.

【分析】过A作AN⊥BC于N,过E作EM⊥AD,交DA延长线于M,得出四边形ANCD是矩形,推出∠DAN=90°=∠ANB=∠MAN,AD=NC=5,AN=CD,求出BN=4,求出∠EAM=∠NAB,证△EAM≌△BNA,求出EM=BN=4,根据三角形的面积公式求出即可.

【解答】过A作AN⊥BC于N,过E作EM⊥AD,交DA延长线于M,

∵AD∥BC,∠C=90°,

∴∠C=∠ADC=∠ANC=90°,

∴四边形ANCD是矩形,

∴∠DAN=90°=∠ANB=∠MAN,AD=NC=5,AN=CD,

∴BN=9-5=4,

∵∠M=∠EAB=∠MAN=∠ANB=90°,

∴∠EAM+∠BAM=90°,∠MAB+∠NAB=90°,

∴∠EAM=∠NAB,

∵在△EAM和△BNA中,∠M=∠ANB;∠EAM=∠BAN;AE=AB,

∴△EAM≌△BNA(AAS),

∴EM=BN=4,

∴△ADE的面积是×AD×EM=×5×4=10.

故选A.

【点评】本题考查了矩形的性质和判定,三角形的面积,全等三角形的性质和判定,主要考查学生运用定理和性质进行推理的能力,题目比较好,难度适中.

查看答案和解析>>


同步练习册答案