问题:在足球比赛中.如果把进球数记为正数.失球数记为负数.它们的和叫做净胜球数. (1)若红队进4个球.失2个球.红队的净胜球数可以怎么表示?算式怎么列? 答:净胜球为2个.表示为+2个.算式用=+2 (2)若红队进2个球.失3个球.净胜球可怎么表示.算式怎么列? 答:净胜-1个.+2+(-3)=-1 (3)若红队进2个球.又失2个球呢? 答:+2+(-2)=0 (4)若红队失2个球.后又进3个球.净胜球几个怎么表示? 答:净胜5个 +2+(+3)=+5 (5)若红队失2个球.后又失3个球.净胜球几个怎么表示? 答:净胜-5个.-2+(-3)=-5 (6)若红队失2个球.后不失不进呢? 答:-2+0=-2. 查看更多

 

题目列表(包括答案和解析)

19、如图(1),在足球比赛中,球员射中球门的难易程度与他所处的位置的射门角度的大小有关.如果在一次比赛中,小华和小勇分别处在图(2)中的A,B两点,球门的位置在线段CD,如果球在小华的脚下,此时他应该选择传给小勇还是自己射门较好?(通过尺规作图说明原因)

查看答案和解析>>

在足球比赛中,当守门员远离球门时,进攻队员常常使用“吊射”的战术(把球高高地挑过守门员的头顶,射入球门).一位球员在离对方球门30米的M处起脚吊射,假如球飞行的路线是一条抛物线,在离球门14米时,足球达到最大高度
323
米.如图a:以球门底部为坐标原点建立坐标系,球门PQ的高度为2.44米.问:
精英家教网
(1)通过计算说明,球是否会进球门?
(2)如果守门员站在距离球门2米远处,而守门员跳起后最多能摸到2.75米高处,他能否在空中截住这次吊射?
(3)如图b:在另一次地面进攻中,假如守门员站在离球门中央2米远的A点处防守,进攻队员在离球门中央12米的B处以120千米/小时的球速起脚射门,射向球门的立柱C.球门的宽度CD为7.2米,而守门员防守的最远水平距离S和时间t之间的函数关系式为S=10 t,问这次射门守门员能否挡住球?

查看答案和解析>>

在足球比赛中,当守门员远离球门时,进攻队员常常使用“吊射”的战术(把球高高地挑过守门员的头顶,射入球门).一位球员在离对方球门30米的M处起脚吊射,假如球飞行的路线是一条抛物线,在离球门14米时,足球达到最大高度米.如图a:以球门底部为坐标原点建立坐标系,球门PQ的高度为2.44米.问:

(1)通过计算说明,球是否会进球门?
(2)如果守门员站在距离球门2米远处,而守门员跳起后最多能摸到2.75米高处,他能否在空中截住这次吊射?
(3)如图b:在另一次地面进攻中,假如守门员站在离球门中央2米远的A点处防守,进攻队员在离球门中央12米的B处以120千米/小时的球速起脚射门,射向球门的立柱C.球门的宽度CD为7.2米,而守门员防守的最远水平距离S和时间t之间的函数关系式为S=10 t,问这次射门守门员能否挡住球?

查看答案和解析>>

在足球比赛中,当守门员远离球门时,进攻队员常常使用“吊射”的战术(把球高高地挑过守门员的头顶,射入球门).一位球员在离对方球门30米的M处起脚吊射,假如球飞行的路线是一条抛物线,在离球门14米时,足球达到最大高度米.如图a:以球门底部为坐标原点建立坐标系,球门PQ的高度为2.44米.问:

(1)通过计算说明,球是否会进球门?
(2)如果守门员站在距离球门2米远处,而守门员跳起后最多能摸到2.75米高处,他能否在空中截住这次吊射?
(3)如图b:在另一次地面进攻中,假如守门员站在离球门中央2米远的A点处防守,进攻队员在离球门中央12米的B处以120千米/小时的球速起脚射门,射向球门的立柱C.球门的宽度CD为7.2米,而守门员防守的最远水平距离S和时间t之间的函数关系式为S=10 t,问这次射门守门员能否挡住球?

查看答案和解析>>

在足球比赛中,当守门员远离球门时,进攻队员常常使用“吊射”的战术(把球高高地挑过守门员的头顶,射入球门).一位球员在离对方球门30米的M处起脚吊射,假如球飞行的路线是一条抛物线,在离球门14米时,足球达到最大高度数学公式米.如图a:以球门底部为坐标原点建立坐标系,球门PQ的高度为2.44米.问:

(1)通过计算说明,球是否会进球门?
(2)如果守门员站在距离球门2米远处,而守门员跳起后最多能摸到2.75米高处,他能否在空中截住这次吊射?
(3)如图b:在另一次地面进攻中,假如守门员站在离球门中央2米远的A点处防守,进攻队员在离球门中央12米的B处以120千米/小时的球速起脚射门,射向球门的立柱C.球门的宽度CD为7.2米,而守门员防守的最远水平距离S和时间t之间的函数关系式为S=10 t,问这次射门守门员能否挡住球?

查看答案和解析>>


同步练习册答案