借助计算器.解决含三角函数的实际问题.提高用现代工具解决实际问题的能力. 查看更多

 

题目列表(包括答案和解析)

问题解决.
如图,A、B两点分别位于一个池塘的两端,小明想用绳子测量A、B之间的距离,但绳子不够长,你能帮他想个主意测量吗?并说明你的理由.用这种方法能解决你身边的实际问题吗?试举一例说明.

查看答案和解析>>

如图,A、B两点分别位于一个池塘的两端,小明想用绳子测量A、B之间的距离,但绳子不够长,你能帮他想个主意测量吗?并说明你的理由.用这种方法能解决你身边的实际问题吗?试举一例说明.

查看答案和解析>>

精英家教网关于三角函数有如下的公式:
sin(α+β)=sinαcosβ+cosαsinβ①
cos(α+β)=cosαcosβ-sinαsinβ②
tan(α+β)=
tanα+tanβ
1-tanα•tanβ

利用这些公式可将某些不是特殊角的三角函数转化为特殊角的三角函数来求值,如:
tan105°=tan(45°+60°)=
tan45°+tan60°
1-tan45°•tan60°
=
1+
3
1-1•
3
=
(1+
3
)(1+
3
)
(1-
3
)(1+
3
)
=-(2+
3
).
根据上面的知识,你可以选择适当的公式解决下面的实际问题:
如图,直升飞机在一建筑物CD上方A点处测得建筑物顶端D点的俯角α=60°,底端C点的俯角β=75°,此时直升飞机与建筑物CD的水平距离BC为42m,求建筑物CD的高.

查看答案和解析>>

关于三角函数有如下的公式:
sin(α+β)=sinαcosβ+cosαsinβ①
cos(α+β)=cosαcosβ-sinαsinβ②
tan(α+β)=
利用这些公式可将某些不是特殊角的三角函数转化为特殊角的三角函数来求值,如:
tan105°=tan(45°+60°)====-(2+).
根据上面的知识,你可以选择适当的公式解决下面的实际问题:
如图,直升飞机在一建筑物CD上方A点处测得建筑物顶端D点的俯角α=60°,底端C点的俯角β=75°,此时直升飞机与建筑物CD的水平距离BC为42m,求建筑物CD的高.

查看答案和解析>>

关于三角函数有如下的公式:
sin(α+β)=sinαcosβ+cosαsinβ①
cos(α+β)=cosαcosβ-sinαsinβ②
tan(α+β)=
利用这些公式可将某些不是特殊角的三角函数转化为特殊角的三角函数来求值,如:
tan105°=tan(45°+60°)====-(2+).
根据上面的知识,你可以选择适当的公式解决下面的实际问题:
如图,直升飞机在一建筑物CD上方A点处测得建筑物顶端D点的俯角α=60°,底端C点的俯角β=75°,此时直升飞机与建筑物CD的水平距离BC为42m,求建筑物CD的高.

查看答案和解析>>


同步练习册答案