3.线段的垂直平分钱(一) 知识与技能目标: 查看更多

 

题目列表(包括答案和解析)

简单的轴对称图形
(1)角是轴对称图形,它的对称轴是它的平分线所在的直线.角平分线上的点到
角的两边
角的两边
的距离相等;到一个角的两边距离相等的点,在
这个角的平分线
这个角的平分线
上.
(2)线段是轴对称图形,线段的
垂直平分线
垂直平分线
是它的一条对称轴.线段的
垂直平分线
垂直平分线
上的点到这条线段两个端点的距离相等.
到线段两端点距离相等
到线段两端点距离相等
的点,在这条线段的垂直平分线上.
轴对称和轴对称图形的区别与联系:
区别:(1)轴对称是说两个图形的位置关系,轴对称图形是说一个具有特殊形状的图形;
(2)轴对称是对两个图形说的,轴对称图形是对一个图形说的.
联系:(1)它们的定义中,都有沿某直线折叠,图形重合;
(2)如果把两个成轴对称的图形看成一个整体,那么它就是一个轴对称图形,反过来,把轴对称图形的两部分当作两个图形,那么这两个图形成轴对称.
提问:等腰三角形的判定与性质?

查看答案和解析>>

16、给出以下两个定理:
①线段垂直平分线上的点到这条线段两个端点的距离相等;
②到一条线段两个端点距离相等的点,在这条线段的垂直平分线上.
应用上述定理进行如下推理,如图,直线l是线段MN的垂直平分线.
∵点A在直线l上,
∴AM=AN(  )
∵BM=BN,
∴点B在直线l上(  )
∵CM≠CN,∴点C不在直线l上.
这是因为如果点C在直线l上,那么CM=CN(  )
这与条件CM≠CN矛盾.
以上推理中各括号内应注明的理由依次是(  )

查看答案和解析>>

14、小明做了一个如图所示的风筝,其中EH=FH,ED=FD,小明说不用测量就知道DH是EF的垂直平分线.其中蕴含的道理是
与一条线段两个端点距离相等的点,在这条线段的垂直平分线上

查看答案和解析>>

15、如图,∠AOB和一条定长线段a,在∠AOB内找一点P,使P到OA,OB的距离都等于a,做法如下:
(1)作OB的垂线NH,使NH=a,H为垂足.
(2)过N作NM∥OB.
(3)作∠AOB的平分线OP,与NM交于P.
(4)点P即为所求.
其中(3)的依据是(  )

查看答案和解析>>

32、与一条线段两个端点距离相等的点,在这条线段的
垂直平分线
上.

查看答案和解析>>


同步练习册答案