利用一个点.一条线段.一个正三角形.一个正方形设计 一个轴对称图案.并说明你要表达的含义. 查看更多

 

题目列表(包括答案和解析)

利用一个点、一条线段、一个正三角形、一个正方形设计一个轴对称图案,并说明你希望表达的含义.

查看答案和解析>>

奥地利数学家皮克发现了一个计算正方形网格纸中多边形面积的公式:
S=a+数学公式b-1,方格纸中每个小正方形的边长为1,其中a表示多边形内部的格点数,b表示多边形边界上的格点数,S表示多边形的面积.
注:①由n条线段依次首尾连接而成的封闭图形叫做n边形,这些线段的端点叫做顶点;
②网格中小正方形的顶点叫格点.
如:在图①中,点A、B、C、D都正好在格点上,那么四边形ABCD的面积S=8+数学公式×4-1=9.
运用上述知识回答:

(1)如图②中,求四边形ABCD的面积;
(2)如图③、④、⑤,若多边形的顶点都在格点上,且面积为6,请画出这样三个形状不同的多边形(多边形的边数≥6).并写出相应的a、b的值.
a=______; a=______; a=______;
b=______.b=______.b=______.

查看答案和解析>>

我们把对称中心重合,四边分别平行的两个正方形之间的部分叫“方形环”,易知方形环四周的宽度相等.一条直线l与方形环的边线有四个交点M、M′、N′、N、小明在探究线段MM′与N′N的数量关系时,从点M′、N′向对边作垂线段M′E、N′F,利用三角形全等、相似及锐角三角函数等相关知识解决了问题、请你参考小明的思路解答下列问题:
(1)当直线l与方形环的对边相交时(如图1),直线l分别交AD、A′D'、B′C′、BC于M、M′、N′、N,小明发现MM′与N′N相等,请你帮他说明理由;
(2)当直线l与方形环的邻边相交时(如图2),l分别交AD、A′D′、D′C′、DC于M、M′、N′、N,l与DC的夹角为α,你认为MM′与N′N还相等吗?若相等,说明理由;若不相等,求出
MM′N′N
的值(用含α的三角函数表示).
精英家教网

查看答案和解析>>

(9分)我们把对称中心重合,四边分别平行的两个正方形之间的部分叫“方形环”,易知方形环四周的宽度相等.

一条直线l与方形环的边线有四个交点.小明在探究线段 的数量关系时,从点向对边作垂线段,利用三角形全等、相似及锐角三角函数等相关知识解决了问题.请你参考小明的思路解答下列问题:

⑴当直线l与方形环的对边相交时(如图1),直线l分别交,小明发现相等,请你帮他说明理由;

⑵当直线l与方形环的邻边相交时(如图2),l分别交l的夹角为,你认为还相等吗?若     相等,说明理由;若不相等,求出的值(用含的三角函数表示).

 

查看答案和解析>>

(9分)我们把对称中心重合,四边分别平行的两个正方形之间的部分叫“方形环”,易知方形环四周的宽度相等.

一条直线l与方形环的边线有四个交点.小明在探究线段 的数量关系时,从点向对边作垂线段,利用三角形全等、相似及锐角三角函数等相关知识解决了问题.请你参考小明的思路解答下列问题:
⑴当直线l与方形环的对边相交时(如图1),直线l分别交,小明发现相等,请你帮他说明理由;
⑵当直线l与方形环的邻边相交时(如图2),l分别交l的夹角为,你认为还相等吗?若    相等,说明理由;若不相等,求出的值(用含的三角函数表示).

查看答案和解析>>


同步练习册答案