如图.在直线MN上求作一点P.使PA=PB. 查看更多

 

题目列表(包括答案和解析)

作图题

如图,在直线MN上求作一点P,使PA=PB.

查看答案和解析>>

如图所示,在直线MN两旁各有一点A、B,且A、B到MN的距离不等,请你在MN上求作一点P,使PA-PB最大,并说明理由.

查看答案和解析>>

(1)如图,在“4×4”正方形网格中,已有2个小正方形被涂黑.请你分别在下面2张图中再将若干个空白的小正方形涂黑,使得涂黑的图形成为轴对称图形.(图(1)要求只有1条对称轴,图(2)要求只有2条对称轴).
(2)如图,A、B为直线MN外两点,且到MN的距离不相等.分别在MN上求一点P,并满足如下条件:
①在图(3)中求一点P使得PA+PB最小; ②在图(4)中求一点P使得|PA-PB|最大.
(不写作法,保留作图痕迹)

查看答案和解析>>

(1)如图,在“4×4”正方形网格中,已有2个小正方形被涂黑.请你分别在下面2张图中再将若干个空白的小正方形涂黑,使得涂黑的图形成为轴对称图形.(图(1)要求只有1条对称轴,图(2)要求只有2条对称轴).
(2)如图,A、B为直线MN外两点,且到MN的距离不相等.分别在MN上求一点P,并满足如下条件:
①在图(3)中求一点P使得PA+PB最小;②在图(4)中求一点P使得|PA-PB|最大.
(不写作法,保留作图痕迹)

查看答案和解析>>

某课题组在探究“泵站问题”时抽象出数学模型:
直线l同旁有两个定点A、B,在直线l上存在点P,使得PA+PB的值最小.解法:作点A关于直线l的对称点A′,连接A′B,则A′B与直线l的交点即为P,且PA+PB的最小值为A′B.
请利用上述模型解决下列问题:
(1)几何应用:如图1,等腰直角三角形ABC的直角边长为2,E是斜边AB的中点,P是AC边上的一动点,则PB+PE的最小值为
 

(2)几何拓展:如图2,△ABC中,AB=2,∠BAC=30°,若在AC、AB上各取一点M、N使BM+MN的值最小,求这个最小值;
(3)代数应用:求代数式
x2+1
+
(4-x)2+4
(0≤x≤4)的最小值.
精英家教网精英家教网

查看答案和解析>>


同步练习册答案