在证明过程中.教师应注意提醒学生运用简单的方法证明.防止学生绕远路.再证三角形全等. 查看更多

 

题目列表(包括答案和解析)

在证明过程中,对已学过的公理、定义、定理,可用来作为推理的根据的是


  1. A.
    公理与定义
  2. B.
    定义、定理与公理
  3. C.
    公理与定理
  4. D.
    定理与定义

查看答案和解析>>

在证明过程中,对已学过的公理、定理、定义及题设,其中可用来作为推理依据的是


  1. A.
    公理、定义、题设
  2. B.
    公理、定理、定义
  3. C.
    公理、定理、题设
  4. D.
    公理、定理、定义、题设

查看答案和解析>>

如图1,小明将一张直角梯形纸片沿虚线剪开,得到矩形和三角形两张纸片,测得AB=5,AD=4.在进行如下操作时遇到了下列几个问题,请你帮助解决.

(1)如图2,将△EFG的顶点G移到矩形的顶点B处,再将三角形绕点B顺时针旋转使E点落在CD边上,此时EF恰好经过点A.
①请证明:△ADE∽△FGE;②求出FG的长度;
(2)如图3,在(1)的条件下,小明先将△EFG的边EG和矩形的边AB重合,然后将△EFG沿直线BC向右平移,至F点与B重合时停止.在平移过程中,设G点平移的距离为x,两纸片重叠部分面积为y,求在平移的整个过程中,y与x的函数关系式.
(3)请直接写出,当重叠面积y在什么范围时,对应的平移距离x有两个值;当重叠面积y在什么范围时,相对应的平移距离x只有一个值?

查看答案和解析>>

27、已知如图1,点P是正方形ABCD的BC边上一动点,AP交对角线BD于点E,过点B作BQ⊥AP于G点,交对角线AC于F,交边CD于Q点.
(1)小聪在研究图形时发现图中除等腰直角三角形外,还有几对三角形全等.请你写出其中三对全等三角形,并选择其中一对全等三角形证明;
(2)小明在研究过程中连接PE,提出猜想:在点P运动过程中,是否存在∠APB=∠CPF?若存在,点P应满足何条件并说明理由;若不存在,为什么?

查看答案和解析>>

辨析题:在△ABC中,已知AB>AC,求证:AB=AC.
证明:如图,作∠BAC的平分线与边BC的中垂线交于点O,
则OB=OC,再作OE垂直AB于E,OF垂直AC于F,则OE=OF,
∴Rt△BOE≌Rt△COF,
∴BE=CF,①
在Rt△AOE和Rt△AOF中,OE=OF,AO=AO,
∴Rt△AOE≌Rt△AOF
∴AE=AF,②
由①、②得,AB=AC.
上述画图与证明过程中,哪里出错了呢?
这说明我们今后在解题时又要注意什么呢?
在△ABC中,AB>AC,∠BAC的平分线与边BC的中垂线相交于点O,OE垂直AB于点E,那么三条线段AB、AC、BE有何等量关系?请你写出来并加以证明.

查看答案和解析>>


同步练习册答案