第三课时 有理数乘法的运算 教学目标: 1 会用乘法的三个运算侓进行乘法的简化运算 2 会进行乘法及加法的混合运算 重点: 会运用乘法运算侓进行乘法运算 难点: 灵活运用运算进行乘法运算 教学过程: 查看更多

 

题目列表(包括答案和解析)

24、有一种“二十四点”的游戏,其游戏规则是这样的,任取四个1到13之间的自然数,将这四个数(每个数用且只有一次)进行加减乘除四则运算,使其结果等于24.
例如:1、2、3、4,可做运算(1+2+3)×4=24,(注意,上述运算与4×(1+2+3)应视为相同方法)
现有四个有理数:3、4、-6、10,运用上述规则写出三种不同方式的运算,使其结果等于24.
解:(1)
3×(4+10-6)

(2)
10-3×(-6)-4

(3)
4-(-6)÷3×10

查看答案和解析>>

同学们学过有理数减法可以转化为有理数加法来运算,有理数除法可以转化为有理数乘法来运算.其实这种转化的数学方法,在学习数学时会经常用到,通过转化我们可以把一个复杂问题转化为一个简单问题来解决.
例如:计算
1
1×2
+
1
2×3
+
1
3×4
+
1
4×5

此题我们按照常规的运算方法计算比较复杂,但如果采用下面的方法把乘法转化为减法后计算就变得非常简单.
分析方法:因为
1
1×2
=1-
1
2
1
2×3
=
1
2
-
1
3
1
3×4
=
1
3
-
1
4
1
4×5
=
1
4
-
1
5

所以,将以上4个等式两边分别相加即可得到结果,解法如下:
解:
1
1×2
+
1
2×3
+
1
3×4
+
1
4×5
=(1-
1
2
)+(
1
2
-
1
3
)+(
1
3
-
1
4
)+(
1
4
-
1
5
)
=1-
1
2
+
1
2
-
1
3
+
1
3
-
1
4
+
1
4
-
1
5
=1-
1
5
=
4
5

(1)应用上面的方法计算:
1
1×2
+
1
2×3
+
1
3×4
+…+
1
2011×2012

(2)计算:
1
1×2
+
1
2×3
+
1
3×4
+…+
1
n(n+1)
=
n
n+1
n
n+1
(只填答案).
(3)类比应用上面的方法探究并计算:
1
2×4
+
1
4×6
+
1
6×8
+…+
1
2010×2012

查看答案和解析>>

有一种“二十四点”的游戏,其游戏规则是这样的,任取四个1到13之间的自然数,将这四个数(每个数用且只有一次)进行加减乘除四则运算,使其结果等于24。

      例如:1、2、3、4,可做运算(1+2+3)×4=24,(注意,上述运算与4×(1+2+3)应视为相同方法)

       现有四个有理数:3、4、-6、10,运用上述规则写出三种不同方式的运算,使其结果等于24。

       解:(1)                                  

       (2)                                   

       (3)                                  

查看答案和解析>>

有一种“二十四点”的游戏,其游戏规则是这样的,任取四个1到13之间的自然数,将这四个数(每个数用且只有一次)进行加减乘除四则运算,使其结果等于24.
例如:1、2、3、4,可做运算(1+2+3)×4=24,(注意,上述运算与4×(1+2+3)应视为相同方法)
现有四个有理数:3、4、-6、10,运用上述规则写出三种不同方式的运算,使其结果等于24.
解:(1)______;
(2)______;
(3)______.

查看答案和解析>>

有一种“二十四点”的游戏,其游戏规则是这样的,任取四个1到13之间的自然数,将这四个数(每个数用且只有一次)进行加减乘除四则运算,使其结果等于24.
例如:1、2、3、4,可做运算(1+2+3)×4=24,(注意,上述运算与4×(1+2+3)应视为相同方法)
现有四个有理数:3、4、-6、10,运用上述规则写出三种不同方式的运算,使其结果等于24.
(1)______;
(2)______;
(3)______.

查看答案和解析>>


同步练习册答案