4.三角形的分类: 斜三角形:三边都不相等的三角形. 三角形 只有两边相等的三角形. 等腰三角形 等边三角形 查看更多

 

题目列表(包括答案和解析)

25、我国古代把直角三角形中较短的直角边称为勾,较长的称为股,斜边称为弦.并发现了“勾股定理”.若直角三角形三边长都为正整数,则称为一组勾股数,如“勾3股4弦5”.勾股数的寻找与判断不是件很容易的事,不过还是有一些规律可循的.(以下n为正整数,且n≥2)
(1)观察:3、4、5;   5、12、13;  7、24、25;…,
小明发现这几组勾股数的勾都是奇数,从3起就没有间断过,且股和弦只相差1.小明根据发现的规律,推算出这一类的勾股数可以表示为:2n-1、2n(n-1)、2n(n-1)+1.请问:小明的这个结论正确吗?
正确
.(直接回答正确或错误,不必证明)
(2)继续观察第一个数为偶数的情况:4、3、5;   6、8、10;   8、15、17;…,
亲爱的同学们,你能像小明一样发现每组勾股数中的其他两边长都有何规律吗?若用2n表示第一个偶数,请分别用n的代数式来表示其他两边,并证明确实是勾股数.

查看答案和解析>>

我国古代把直角三角形中较短的直角边称为勾,较长的称为股,斜边称为弦.并发现了“勾股定理”.若直角三角形三边长都为正整数,则称为一组勾股数,如“勾3股4弦5”.勾股数的寻找与判断不是件很容易的事,不过还是有一些规律可循的.(以下n为正整数,且n≥2)
(1)观察:3、4、5;  5、12、13; 7、24、25;…,
小明发现这几组勾股数的勾都是奇数,从3起就没有间断过,且股和弦只相差1.小明根据发现的规律,推算出这一类的勾股数可以表示为:2n-1、2n(n-1)、2n(n-1)+1.请问:小明的这个结论正确吗?
答______.(直接回答正确或错误,不必证明)
(2)继续观察第一个数为偶数的情况:4、3、5;  6、8、10;  8、15、17;…,
亲爱的同学们,你能像小明一样发现每组勾股数中的其他两边长都有何规律吗?若用2n表示第一个偶数,请分别用n的代数式来表示其他两边,并证明确实是勾股数.

查看答案和解析>>

在图1中,正方形ABCD的边长为a,等腰直角三角形FAE的斜边AE=2b,且边AD和AE在同一直线上.
操作示例
当2b<a时,如图1,在BA上选取点G,使BG=b,连结FG和CG,裁掉△FAG和△CGB并分别拼接到△FEH和△CHD的位置构成四边形FGCH.
思考发现
小明在操作后发现:该剪拼方法就是先将△FAG绕点F逆时针旋转90°到△FEH的位置,易知EH与AD在同一直线上.连结CH,由剪拼方法可得DH=BG,故△CHD≌△CGB,从而又可将△CGB绕点C顺时针旋转90°到△CHD的位置.这样,对于剪拼得到的四边形FGCH(如图1),过点F作FM⊥AE于点M(图略),利用SAS公理可判断△HFM≌△CHD,易得FH=HC=GC=FG,∠FHC=90°.进而根据正方形的判定方法,可以判断出四边形FGCH是正方形.
实践探究
【小题1】正方形FGCH的面积是         ;(用含a, b的式子表示)
【小题2】类比图1的剪拼方法,请你就图2—图4的三种情形分别画出剪拼成一个新正方形的示意图.

【小题3】联想拓展小明通过探究后发现:当b≤a时,此类图形都能剪拼成正方形,且所选取的点G的位置在BA方向上随着b的增大不断上移.当b>a时(如图5),能否剪拼成一个正方形?若能,请你在图5中画出剪拼成的正方形的示意图;若不能,简要说明理由.

查看答案和解析>>

在图1中,正方形ABCD的边长为a,等腰直角三角形FAE的斜边AE=2b,且边AD和AE在同一直线上.
操作示例
当2b<a时,如图1,在BA上选取点G,使BG=b,连结FG和CG,裁掉△FAG和△CGB并分别拼接到△FEH和△CHD的位置构成四边形FGCH.
思考发现
小明在操作后发现:该剪拼方法就是先将△FAG绕点F逆时针旋转90°到△FEH的位置,易知EH与AD在同一直线上.连结CH,由剪拼方法可得DH=BG,故△CHD≌△CGB,从而又可将△CGB绕点C顺时针旋转90°到△CHD的位置.这样,对于剪拼得到的四边形FGCH(如图1),过点F作FM⊥AE于点M(图略),利用SAS公理可判断△HFM≌△CHD,易得FH=HC=GC=FG,∠FHC=90°.进而根据正方形的判定方法,可以判断出四边形FGCH是正方形.
实践探究
【小题1】正方形FGCH的面积是         ;(用含a, b的式子表示)
【小题2】类比图1的剪拼方法,请你就图2—图4的三种情形分别画出剪拼成一个新正方形的示意图.

【小题3】联想拓展小明通过探究后发现:当b≤a时,此类图形都能剪拼成正方形,且所选取的点G的位置在BA方向上随着b的增大不断上移.当b>a时(如图5),能否剪拼成一个正方形?若能,请你在图5中画出剪拼成的正方形的示意图;若不能,简要说明理由.

查看答案和解析>>

在图1中,正方形ABCD的边长为a,等腰直角三角形FAE的斜边AE=2b,且边AD和AE在同一直线上.
操作示例
当2b<a时,如图1,在BA上选取点G,使BG=b,连结FG和CG,裁掉△FAG和△CGB并分别拼接到△FEH和△CHD的位置构成四边形FGCH.
思考发现
小明在操作后发现:该剪拼方法就是先将△FAG绕点F逆时针旋转90°到△FEH的位置,易知EH与AD在同一直线上.连结CH,由剪拼方法可得DH=BG,故△CHD≌△CGB,从而又可将△CGB绕点C顺时针旋转90°到△CHD的位置.这样,对于剪拼得到的四边形FGCH(如图1),过点F作FM⊥AE于点M(图略),利用SAS公理可判断△HFM≌△CHD,易得FH=HC=GC=FG,∠FHC=90°.进而根据正方形的判定方法,可以判断出四边形FGCH是正方形.
实践探究
小题1:正方形FGCH的面积是         ;(用含a, b的式子表示)
小题2:类比图1的剪拼方法,请你就图2—图4的三种情形分别画出剪拼成一个新正方形的示意图.

小题3:联想拓展小明通过探究后发现:当b≤a时,此类图形都能剪拼成正方形,且所选取的点G的位置在BA方向上随着b的增大不断上移.当b>a时(如图5),能否剪拼成一个正方形?若能,请你在图5中画出剪拼成的正方形的示意图;若不能,简要说明理由.

查看答案和解析>>


同步练习册答案