上节课我们学习了100万有多大,同学们都有感受了,在生活中还经常遇到比100万更大的数. 上面这些数都很大,你该怎样表示它们呢? 查看更多

 

题目列表(包括答案和解析)

本节我们学习了定理:“直角三角形斜边上的中线等于斜边的一半。”即:
如图①所示,在Rt △ABC中,∠ACB=90°,若CD 是斜边AB上的中线,则有CD=AB。证明这个定理的方法有多种,教材是利用矩形的性质进行证明的,其实还可利用三角形的中位线定理来证明,请你根据图中已添的辅助线证明此定理。
(1)方法(一):如图②所示,延长BC至E,使CE=BC,连结AE;
(2 )方法(二):如图③所示,取BC的中点E,连结DE。

查看答案和解析>>

我们学习了“弧、弦、圆心角的关系”,实际上我们还可以得到“圆心角、弧、弦、弦心距之间的关系”如下:圆心角、弧、弦、弦心距之间的关系:在同圆或等圆中,如果两个圆心角i两条弧、两条弦或两条弦的弦心距中有一组量相等,那么它们对应的其余各组量也相等.(弦心距指从圆心到弦的距离(如图(1)中的OC、OC′),弦心距也可以说成圆心到弦的垂线段的长度.)
请直接运用圆心角、弧、弦、弦心距之间的关系解答下列问题.
如图(2),O是∠EPF的平分线上一点,以点O为圆心的圆与角的两边分别交子点A、B、C、D.
(1)求证:AB=CD;
(2)若角的顶点P在圆上或圆内,上述结论还成立吗?若不成立,请说明理由;若成立,请加以证明.

查看答案和解析>>

50名学生在《生日相同的概率》一节课的学习中进行了如下模拟试验:每人随机写出一个生日(某月某日),然后看这50个生日中有没有2人相同.现在有如下说法:
①在一次试验中,若有2人生日相同,则50个人中有2人生日相同的概率是1;
②在一次试验中,若没有2人生日相同,则50个人中有2人生日相同的概率是0;
③在30次试验中,若有2人生日相同的有25次,则50个人中有2人生日相同的频率是
25
30

④在大量试验中得出结论,50个人中有2人生日相同的概率较大.
其中正确的说法有(  )

查看答案和解析>>

我们学习了因式分解之后可以解某些高次方程,例如,一元二次方程x2+x-2=0可以通过因式分解化为:(x-1)(x+2)=0,则方程的两个解为x=1和x=-2.反之,如果x=1是某方程ax2+bx+c=0的一个解,则多项式ax2+bx+c必有一个因式是 (x-1),在理解上文的基础上,试找出多项式x3+x2-3x+1的一个因式,并将这个多项式因式分解.

查看答案和解析>>

7、我们学习了四边形和一些特殊的四边形,如图表示了在某种条件下它们之间的关系.
如果①,②两个条件分别是:①两组对边分别平行;②有且只有一组对边平行.
那么请你对标上的其他6个数字序号写出相对应的条件.

查看答案和解析>>


同步练习册答案