1.了解黄金分割.黄金矩形.黄金三角形的意义. 查看更多

 

题目列表(包括答案和解析)

(如图1),点P将线段AB分成一条较小线段AP和一条较大线段BP,如果
AP
BP
=
BP
AB
,那么称点P为线段AB的黄金分割点,设
AP
BP
=
BP
AB
=k,则k就是黄金比,并且k≈0.618.
精英家教网
(1)以图1中的AP为底,BP为腰得到等腰△APB(如图2),等腰△APB即为黄金三角形,黄金三角形的定义为:满足
=
底+腰
≈0.618的等腰三角形是黄金三角形;类似地,请你给出黄金矩形的定义:
 

(2)如图1,设AB=1,请你说明为什么k约为0.618;
(3)由线段的黄金分割点联想到图形的“黄金分割线”,类似地给出“黄金分割线”的定义:直线l将一个面积为S的图形分成面积为S1和面积为S2的两部分(设S1<S2),如果
S1
S2
=
S2
S
,那么称直线l为该图形的黄金分割线.(如图3),点P是线段AB的黄金分割点,那么直线CP是△ABC的黄金分割线吗?请说明理由;
(4)图3中的△ABC的黄金分割线有几条?

查看答案和解析>>

(如图1),点P将线段AB分成一条较小线段AP和一条较大线段BP,如果,那么称点P为线段AB的黄金分割点,设=k,则k就是黄金比,并且k≈0.618.

(1)以图1中的AP为底,BP为腰得到等腰△APB(如图2),等腰△APB即为黄金三角形,黄金三角形的定义为:满足≈0.618的等腰三角形是黄金三角形;类似地,请你给出黄金矩形的定义:______;
(2)如图1,设AB=1,请你说明为什么k约为0.618;
(3)由线段的黄金分割点联想到图形的“黄金分割线”,类似地给出“黄金分割线”的定义:直线l将一个面积为S的图形分成面积为S1和面积为S2的两部分(设S1<S2),如果,那么称直线l为该图形的黄金分割线.(如图3),点P是线段AB的黄金分割点,那么直线CP是△ABC的黄金分割线吗?请说明理由;
(4)图3中的△ABC的黄金分割线有几条?

查看答案和解析>>

(如图1),点P将线段AB分成一条较小线段AP和一条较大线段BP,如果数学公式,那么称点P为线段AB的黄金分割点,设数学公式=k,则k就是黄金比,并且k≈0.618.

(1)以图1中的AP为底,BP为腰得到等腰△APB(如图2),等腰△APB即为黄金三角形,黄金三角形的定义为:满足数学公式≈0.618的等腰三角形是黄金三角形;类似地,请你给出黄金矩形的定义:______;
(2)如图1,设AB=1,请你说明为什么k约为0.618;
(3)由线段的黄金分割点联想到图形的“黄金分割线”,类似地给出“黄金分割线”的定义:直线l将一个面积为S的图形分成面积为S1和面积为S2的两部分(设S1<S2),如果数学公式,那么称直线l为该图形的黄金分割线.(如图3),点P是线段AB的黄金分割点,那么直线CP是△ABC的黄金分割线吗?请说明理由;
(4)图3中的△ABC的黄金分割线有几条?

查看答案和解析>>

22、如图所示,顶角A为36°的第一个黄金三角形△ABC的腰AB=1,底边与腰之比为K,三角形△BCD为第二个黄金三角形,依次类推,第2008个黄金三角形的周长为
K2007(2+K)

查看答案和解析>>

(2013•温州一模)如图,已知线段AB,
(1)线段AB为腰作一个黄金三角形(尺规作图,要求保留作图痕迹,不必写出作法);
(友情提示:三角形两边之比为黄金比的等腰三角形叫做黄金三角形)
(2)若AB=2,求出你所作的黄金三角形的周长.

查看答案和解析>>


同步练习册答案