1.探索三角形相似的条件.会运用三角形相似的条件解决有关问题. 查看更多

 

题目列表(包括答案和解析)

如图,AB是⊙O的直径,CD切⊙O于C点.AD交⊙O于点E.探索AC满足什么条件时,有AD⊥CD,并加以证明.

查看答案和解析>>

精英家教网如图,AB是⊙O的直径,CD切⊙O于C点.AD交于⊙O点E.
(1)探索AC满足什么条件时,有AD⊥CD,并加以证明;
(2)当AD⊥CD,AD=4,AB=5时,求AC、DE的长度.

查看答案和解析>>

如图,在直角坐标系中,⊙O的圆心O在坐标原点,直径AB=8,点P是直径AB上的一个动点(点P不与A、B两点重合),过点P的直线PQ的解析式为y=x+m,当直线PQ交y轴于Q,交⊙O于C、D两点时,过点C作CE垂直于x轴交⊙O于点E,过点E作EG垂直于y轴,垂足为G,过点C作CF垂直于y轴,垂足为F,连接DE.
(1)点P在运动过程中,sin∠CPB=
2
2
2
2

(2)当m=3时,试求矩形CEGF的面积;
(3)当P在运动过程中,探索PD2+PC2的值是否会发生变化?如果发生变化,请你说明理由;如果不发生变化,请你求出这个不变的值;
(4)如果点P在射线AB上运动,当△PDE的面积为4时,请你求出CD的长度.

查看答案和解析>>

A、观察下列图形的变化过程,解答以下问题:

如图,在△ABC中,D为BC边上的一动点(D点不与B、C两点重合).DE∥AC交AB于E点,DF∥AB交AC于F点.
(1)试探索AD满足什么条件时,四边形AEDF为菱形,并说明理由;
(2)在(1)的条件下,△ABC满足什么条件时,四边形AEDF为正方形.为什么?

B、已知:如图,在△ABC中,D是BC边上的一点,连接AD,取AD的中点E,过点A作BC的平行线与CE的延长线交于点F,连接DF.
(1)求证:AF=DC;
(2)若AD=CF,试判断四边形AFDC是什么样的四边形?并证明你的结论.

查看答案和解析>>

28、观察下列图形的变化过程,解答以下问题:

如图,在△ABC中,D为BC边上的一动点(D点不与B、C两点重合).DE∥AC交AB于E点,DF∥AB交AC于F点.

(1)试探索AD满足什么条件时,四边形AEDF为菱形,并说明理由;
(2)在(1)的条件下,△ABC满足什么条件时,四边形AEDF为正方形?为什么?

查看答案和解析>>


同步练习册答案