3.让学生说说可以通过什么建立等量关系.强调不变量在建立等量关系中的重要作用. 查看更多

 

题目列表(包括答案和解析)

阅读下列文字:我们知道对于一个图形,通过不同的方法计算图形的面积时,可以得到一个数学等式,例如由图a可以得到a2+3ab+2b2=(a+2b)(a+b).请回答下列问题:

(1)写出图b中所表示的数学等式是
2a2+5ab+2b2=(2a+b)(a+2b)
2a2+5ab+2b2=(2a+b)(a+2b)

(2)试画出一个长方形,使得用不同的方法计算它的面积时,能得到2a2+3ab+b2=(2a+b)(a+b).
(3)课本68页练一练,有一题:如图c,用四块完全相同的长方形拼成正方形,用不同的方法,计算图中阴影部分的面积,你能发现什么?(用含有x、y的多少表示)
4xy=(x+y)2-(x-y)2
4xy=(x+y)2-(x-y)2

(4)通过上述的等量关系,我们可知:
当两个正数的和一定时,它们的差的绝对值越小则积越
(填“大”或“小”).
当两个正数的积一定时,它们的差的绝对值越小则和越
(填“大”或“小”).
(5)利用上面得出的结论,对于正数x,求:
代数式:2x+
2x
的最小值是
4
4

代数式:x(6-x)的最大值是
9
9

查看答案和解析>>

阅读下列文字:我们知道对于一个图形,通过不同的方法计算图形的面积时,可以得到一个数学等式,例如由图a可以得到a2+3ab+2b2=(a+2b)(a+b).请回答下列问题:

(1)写出图b中所表示的数学等式是______.
(2)试画出一个长方形,使得用不同的方法计算它的面积时,能得到2a2+3ab+b2=(2a+b)(a+b).
(3)课本68页练一练,有一题:如图c,用四块完全相同的长方形拼成正方形,用不同的方法,计算图中阴影部分的面积,你能发现什么?(用含有x、y的多少表示)______.
(4)通过上述的等量关系,我们可知:
当两个正数的和一定时,它们的差的绝对值越小则积越______(填“大”或“小”).
当两个正数的积一定时,它们的差的绝对值越小则和越______(填“大”或“小”).
(5)利用上面得出的结论,对于正数x,求:
代数式:2x+数学公式的最小值是______;
代数式:x(6-x)的最大值是______.

查看答案和解析>>

如图1是一个长为4a、宽为b的长方形,沿图中虚线用剪刀平均分成四块小长方形,然后用四块小长方形拼成的一个“回形”正方形(如图2).

(1)图2中的阴影部分的面积为
(b-a)2
(b-a)2

(2)观察图2请你写出 (a+b)2、(a-b)2、ab之间的等量关系是
(a+b)2-(a-b)2=4ab
(a+b)2-(a-b)2=4ab

(3)根据(2)中的结论,若x+y=5,x•y=
94
,则x-y=
±4
±4

(4)实际上通过计算图形的面积可以探求相应的等式.如图3,你有什么发现?
(a+b)•(3a+b)=3a2+4ab+b2
(a+b)•(3a+b)=3a2+4ab+b2

查看答案和解析>>

小张升入高中,开学第一天,老师让班级的同学每两个人相互握手,结成好朋友,其中发现所有的同学一共握手820次.我们可以通过这个数据求出班级里的学生人数,设班级共有学生n人,则每一个学生需握手n-1次,这样n个学生就握了n(n-1)次手,而每两人之间的握手被重复计算了一次,所以可得
n(n-1)2
=820
,这样就可以解出n了.你看明白了没有?
(1)请你运用上述方法,探索8边形对角线的条数.并写出你的思路;
(2)请你用题目所给方法得出n边形对角线的条数的公式.

查看答案和解析>>

如图1是一个长为4a、宽为b的长方形,沿图中虚线用剪刀平均分成四块小长方形,然后用四块小长方形拼成的一个“回形”正方形(如图2).
(1)图2中的阴影部分的面积为
(b-a)2
(b-a)2

(2)观察图2请你写出(a+b)2、(a-b)2、ab之间的等量关系是
(a+b)2-(a-b)2=4ab
(a+b)2-(a-b)2=4ab

(3)实际上通过计算图形的面积可以探求相应的等式.如图3,你有什么发现?
(a+b)•(3a+b)=3a2+4ab+b2
(a+b)•(3a+b)=3a2+4ab+b2

查看答案和解析>>


同步练习册答案