(一)知识目标 1.了解全等图形.全等多边形.全等三角形. 2.平移.旋转.翻折等图形基本运动对全等图形的影响. 3.掌握全等多边形性质与识别方法.全等三角形的性质. 4.简单应用全等多边形性质.全等三角形的性质解决实际问题. 查看更多

 

题目列表(包括答案和解析)

如图,AD为⊙O的直径,作⊙O的内接等边三角形ABC.黄皓、李明两位同学的作法分别是:
黄皓:1.作OD的垂直平分线,交⊙O于B,C两点,
      2.连接AB,AC,△ABC即为所求的三角形.
李明:1.以D为圆心,OD长为半径作圆弧,交⊙O于B,C两点,
      2.连接AB,BC,CA,△ABC即为所求的三角形.
已知两位同学的作法均正确,请选择其中一种作法补全图形,并证明△ABC是等边三角形.
解:我选择
黄皓
黄皓
的作法.
证明:

查看答案和解析>>

今年以来,我国持续大面积的雾霾天气让环保和健康问题成为焦点.为了调查学生对雾霾天气知识的了解程度,某校在学生中做了一次抽样调查,调查结果共分为四个等级:A.非常了解;B.比较了解;C.基本了解;D.不了解.根据调查统计结果,绘制了不完整的三种统计图表.

对雾霾了解程度的统计表:
对雾霾的了解程度 百分比
A.非常了解 5%
B.比较了解 m
C.基本了解 45%
D.不了解 n
请结合统计图表,回答下列问题.
(1)本次参与调查的学生共有
400
400
人,m=
15%
15%
,n=
35%
35%

(2)图2所示的扇形统计图中D部分扇形所对应的圆心角是多少度;
(3)请补全条形统计图.

查看答案和解析>>

19、“安全教育,警钟长鸣”,为此某校从1400名学生中随机抽取了200名学生就完全知识的了解情况进行问卷调查,然后按“很好”、“较好”、“一般”、“较差”四类汇总分析,并绘制了扇形统计形(如图).
(1)补全扇形统计图,并计算这200名学生中对安全知识了解“较好”、“很好”的总人数;
(2)在图2中,绘制样本频数的条形统计图;
(3)根据以上信息,请提出一条合理化建议.

查看答案和解析>>

下列说法不正确的是(  )

查看答案和解析>>

25、画图并讨论:
已知△ABC,如图所示,要求画一个三角形,使它与△ABC有一个公共的顶点C,并且与△ABC全等.
甲同学的画法是:(1)延长BC和AC;(2)在BC的延长线上取点D,使CD=BC;(3)在AC的延长线上取点E,使CE=AC;(4)连接DE,得△DEC.乙同学的画法是:(1)延长AC和BC;(2)在BC的延长线上取点M,使CM=AC;(3)在AC的延长线上取点N,使CN=BC;(4)连接MN,得△MNC.
究竟哪种画法对,有如下几种可能:
①甲画得对,乙画得不对;②甲画的不对,乙画得对;③甲、乙都画得对;④甲、乙都画得不对;正确的结论是

这道题还可这样完成:(1)用量角器量出∠ACB的度数;(2)在∠ACB的外部画射线CP,使∠ACP=∠ACB;(3)在射线CP上取点D,使CD=CB;(4)连接AD,△ADC就是所要画的三角形、这样画的结果可记作△ABC≌
△ADC

满足题目要求的三角形可以画出多少个呢?答案是
无数个

请你再设计一种画法并画出图形.

查看答案和解析>>


同步练习册答案