活动内容 师生互动思考与安排 问题一: 1.三角形3个内角的和是多少? 2.你是如何知道的? 3.你认为这个结论正确吗?你有过怀疑吗?为什么? 说明:设计问题情境.实质是借助拼图实践.为定理的证明铺垫了基本思路--把3个角“搬 到一起.利用平角的定义来证明.同时使添加辅助线有必要.有意义.由于学生经历了“直观判断不可靠 .“直观无法做出确定的判断 .所以实际教学中.学生对三角形3个内角和结论的正确性需要确认.也就是证明. 问题二: 1.如何证明三角形内角和等于180°? 2.你有没有办法在平面图形中把三角形的三个内角“搬 到一起? 分析:添加辅助线.实质是构造新图形.由于学生没有接触过辅助线.实际教学中学生可能采用的方法有: (1)拼图中把一个角移动位置的活动.通过画一个角等于这个角来实现. (2)从已有的对图形的平移.旋转的认识出发.通过角的平移.旋转把三角形的3个内角“搬 到一起. 3.你能想办法把∠A.∠B“搬 到相应的位置上吗? 已知:△ABC. 求证:∠A+∠B+∠C=180°. 证明:如图.作BC的延长线CD.过点C作CE∥AB, ∵CE∥AB, ∴∠1=∠B(两直线平行.同位角相等), ∴∠2=∠A(两直线平行.内错角相等). ∵∠1+∠2+∠ACB=180°, ∴∠A+∠B+∠ACB=180°. 通过证明我们现在对三角形内角和等于180°不再产生怀疑了.于是得到: 三角形内角和定理:三角形三个内角的和等于180°. 说明:证明后可以让让学生知道三角形定理的可靠性与完备性.只有通过证明过的理论才是完美的.前面学过的很多正确的命题都可以通过用证明的方法来说明它们的正确性.如“等边对等角 .“平行四边形的对边相等 等. 4. 画∠ACE=∠A是否也可以证明: ∠A+∠B+∠ACB=180°? 5. 你还有不同的证明方法吗?与同学交流. 例如:过点A作EF∥BC. 思考:如图.∠α是△ABC的一个外角.∠α与△ABC的内角有怎样的大小关系? 由三角形内角和定理.可以知道: ∠α=∠A+∠B, 进而∠α>∠A. ∠α>∠B. 三角形内角和定理的推论:1. 三角形的一个外角等于和它不相邻的两个内角的和, 查看更多

 

题目列表(包括答案和解析)

21、下面是数学课堂的一个学习片断.阅读后,请回答下面的问题:
学习等腰三角形有关内容后,张老师请同学们交流讨论这样一个问题:“已知等腰三角形ABC的角A等于30°,请你求出其余两角”.
同学们经片刻的思考与交流后,李明同学举手讲:“其余两角是30°和120°”;王华同学说:“其余两角是75°和75°”.还有一些同学也提出了不同的看法….
(1)假如你也在课堂中,你的意见如何为什么?
(2)通过上面数学问题的讨论,你有什么感受?(用一句话表示)

查看答案和解析>>

下面是数学课堂的一个学习片段,阅读后,请回答下面的问题:
学习勾股定理有关内容后,张老师请同学们交流讨论这样一个问题:“已知直角三角形ABC的两边长分别为3和4,请你求出第三边.”
同学们经片刻的思考与交流后,李明同学举手说:“第三边长是5”;王华同学说:“第三边长是
7
.”还有一些同学也提出了不同的看法…
(1)假如你也在课堂上,你的意见如何?为什么?
(2)通过上面数学问题的讨论,你有什么感受?(用一句话表示)

查看答案和解析>>

8、十堰市五堰商场为了增加销售额,推出“五月销售大酬宾”活动,其活动内容为:“凡五月份在该商场一次性购物超过50元以上者,超过50元的部分按9折优惠”.在大酬宾活动中,李明到该商场为单位购买单价为30元的办公用品x件(x>2),则应付货款y(元)与商品件数x的函数关系式是(  )

查看答案和解析>>

我市某中学开展了以“热爱家乡,与环境友好;牵手幸福,与健康同行”为主题的远足训练活动,师生到距学校18千米的森林公园并沿途捡拾垃圾,李老师因有事晚出发2个小时,为追赶师生队伍李老师骑自行车走近路比师生队伍少走了6千米,结果早到达48分钟,已知李老师骑自行车的平均速度是师生步行平均速度的3倍,设师生步行的平均速度为x千米/时,则根据题意可列出方程为:
18
x
=
18-6
3x
+2+
48
60
18
x
=
18-6
3x
+2+
48
60
.(直接用方程中的数据,不必化简)

查看答案和解析>>


同步练习册答案