1等可能性 同步练习 [目标与方法] 查看更多

 

题目列表(包括答案和解析)

下列事件中是等可能性事件有(  )
①某运动员射击一次中靶心与不中靶心,
②随意抛一枚硬币背面向上与正面向上,
③随意投掷一只纸可乐杯杯口朝上或杯底朝上或横卧,
④从分别写有1,3,5,7,9中的一个数的五张卡片中任抽1张结果是1或3或5或7或9.

查看答案和解析>>

等腰三角形是我们熟悉的图形之一,下面介绍一种等分等边三角形面积的方法:如图(1),在△ABC中,AB=AC,把底边BC分成m等份,连接顶点A和底边BC各等分点的线段,即可把这个三角形的面积m等分.
问题的提出:任意给定一个正n边形,你能把它的面积m等分吗?
探究与发现:为了解决这个问题,我们先从简单问题入手:怎样从正三角形的中一心(正多边形的各对称轴的交点,又称为正多边形的中心)引线段,才能将这个正三角形的面积m等分?
如果要把正三角形的面积四等分,我们可以先连接正三角形的中心和各顶点(如图(2),这些线段将这个正三角形分成了三个全等的等腰三角形);再把所得的每个等腰三角形的底边四等分,连接中心和各边等分点(如图(3),这些线段把这个正三角形分成了12个面积相等的小三角形);最后,依次把相邻的三个小三角形拼合在一起(如图(4)).这样就把正三角形的面积四等分.

(1)实验与验证:依照上述方法,利用刻度尺,在图(5)中画出一种将正三角形的面积五等分的简单示意图;
(2)猜想与证明:怎样从正三角形的中心引线段,才能将这个正三角形的面积m等分?叙述你的分法并说明理由;
(3)拓展与延伸:怎样从正方形的中心引线段,才能将这个正方形的面积m等分?(叙述方法即可,不需说明理由)
(4)向题解决:怎样从正n边形的中心引线段,才能将这个正n边形的面积m等分?(叙述分法即可,不需说明理由).

查看答案和解析>>

拓广探索
七年某班师生为了解决“22012个位上的数字是
6
6
.”这个问题,通过观察、分析、猜想、验证、归纳等活动,从而使问题得以解决,体现了从特殊到一般的数学思想方法.师生共同探索如下:
(1)认真填空,仔细观察.
因为21=2,所以21个位上的数字是2;
因为22=4,所以22个位上的数字是4;
因为23=8,所以23个位上的数字是8;
因为24=
16
16
,所以24个位上的数字是
6
6

因为25=
32
32
,所以25个位上的数字是
2
2

因为26=
64
64
,所以26个位上的数字是
4
4

(2)①小明是个爱动脑筋的学生,他利用上述方法继续探索,马上发现了规律,于是猜想:210个位上的数字是4,你认为对吗?试通过计算加以验证.
②同学们,你们发现的规律与小明一样吗?不妨把你们发现的规律写出来:
尾数每4个一循环分别为:2,4,8,6
尾数每4个一循环分别为:2,4,8,6

(3)利用上述得到的规律,可知:22012个位上的数字是
6
6

(4)利用上述研究数学问题的思想与方法,试求:32013个位上的数字是
3
3

查看答案和解析>>

在数学活动课上,老师要求同学们先做下面的“循环分割”操作,然后再探索规律:
如图1,是一等腰梯形纸片,其腰长与上底长相等,且底角分别60°和120°,按要求开始操作(每次分割,纸片均不得留有剩余);
精英家教网
第1次分割:将原等腰梯形纸片分割成3个等边三角形;
第2次分割:将上次分割出的一个等边三角形分割成3个全等的等腰梯形,然后将刚分割出的一个等腰梯形分割成3个等边三角形;
以后按第2次分割的方法进行下去…请解答下列问题:
(1)请你在图2中画出前两次分割后的图案;
(2)若原等腰梯形的面积为a,请你通过操作、观察,将第2次,第3次分割后所得的一个最小等边三角形的面积分别填入下表:
 
分割次数(n) 1 2 3
一个最小等边三角形的面积(S)
1
3
a
   
(3)请你猜想,分割所得的一个最小等边三角形面积S与分割次数n有何关系?(请直接用含a的式子表示,不需写推理过程)

查看答案和解析>>

(2013•鼓楼区一模)问题提出:
规定:四条边对应相等,四个角对应相等的两个四边形全等.
我们借助学习“三角形全等的判定”获得的经验与方法对“全等四边形的判定”进行探究.
初步思考:
在两个四边形中,我们把“一条边对应相等”或“一个角对应相等”称为一个条件.满足4个条件的两个四边形不一定全等,如边长相等的正方形与菱形就不一定全等.类似地,我们容易知道两个四边形全等至少需要5个条件.
深入探究:
小莉所在学习小组进行了研究,她们认为5个条件可分为以下四种类型:
Ⅰ一条边和四个角对应相等;Ⅱ二条边和三个角对应相等;
Ⅲ三条边和二个角对应相等;Ⅳ四条边和一个角对应相等.
(1)小明认为“Ⅰ一条边和四个角对应相等”的两个四边形不一定全等,请你举例说明.
(2)小红认为“Ⅳ四条边和一个角对应相等”的两个四边形全等,请你结合下图进行证明.
已知:如图,
四边形ABCD和四边形A1B1C1D1中,AB=A1B1,BC=B1C1,CD=C1D1,DA=D1A1,∠B=∠B1
四边形ABCD和四边形A1B1C1D1中,AB=A1B1,BC=B1C1,CD=C1D1,DA=D1A1,∠B=∠B1

求证:
四边形ABCD≌四边形A1B1C1D1
四边形ABCD≌四边形A1B1C1D1

证明:

(3)小刚认为还可以对“Ⅱ二条边和三个角对应相等”进一步分类,他以四边形ABCD和四边形A1B1C1D1为例,分为以下几类:
①AB=A1B1,AD=A1D1,∠A=∠A1,∠B=∠B1,∠C=∠C1
②AB=A1B1,AD=A1D1,∠A=∠A1,∠B=∠B1,∠D=∠D1
③AB=A1B1,AD=A1D1,∠B=∠B1,∠C=∠C1,∠D=∠D1
④AB=A1B1,CD=C1D1,∠A=∠A1,∠B=∠B1,∠C=∠C1
其中能判定四边形ABCD和四边形A1B1C1D1全等的是
①②③
①②③
(填序号),概括可得“全等四边形的判定方法”,这个判定方法是
有一组邻边和三个角对应相等的两个四边形全等
有一组邻边和三个角对应相等的两个四边形全等

(4)小亮经过思考认为也可以对“Ⅲ三条边和二个角对应相等”进一步分类,请你仿照小刚的方法先进行分类,再概括得出一个全等四边形的判定方法.

查看答案和解析>>


同步练习册答案