由 知E是MD的中点.
连结BM、BD,设BDAC=O,则O为BD的中点.
所以 BM//OE. ②
由①、②知,平面BFM//平面AEC.
又 BF平面BFM,所以BF//平面AEC.
证法二
因为
所以 、、共面.
又 BF平面ABC,从而BF//平面AEC.
(20)解:(Ⅰ)
(i)当a=0时,令
若上单调递增;
若上单调递减.
(ii)当a<0时,令
若上单调递减;
若上单调递增;
若上单调递减.
(Ⅱ)(i)当a=0时,在区间[0,1]上的最大值是
(ii)当时,在区间[0,1]上的最大值是.
(iii)当时,在区间[0,1]上的最大值是
(21)解:(Ⅰ)依题意,可设直线AB的方程为 代入抛物线方程得
①
设A、B两点的坐标分别是
、、x2是方程①的两根.
所以
由点P(0,m)分有向线段所成的比为,
得
又点Q是点P关于原点的对称点,
故点Q的坐标是(0,-m),从而.
所以
(Ⅱ)由 得点A、B的坐标分别是(6,9)、(-4,4).
由 得
所以抛物线 在点A处切线的斜率为
设圆C的方程是
则
解之得
所以圆C的方程是
即
(22)(Ⅰ)证明:设点Pn的坐标是,由已知条件得
点Qn、Pn+1的坐标分别是:
由Pn+1在直线l1上,得
所以 即
(Ⅱ)解:由题设知 又由(Ⅰ)知 ,
所以数列 是首项为公比为的等比数列.
从而
(Ⅲ)解:由得点P的坐标为(1,1).
所以
(i)当时,>1+9=10.
而此时
(ii)当时,<1+9=10.
而此时