已知的值. 查看更多

 

题目列表(包括答案和解析)

(本小题满分12分)已知函数,其中a为常数.

   (Ⅰ)若当恒成立,求a的取值范围;

   (Ⅱ)求的单调区间.

查看答案和解析>>

(本小题满分12分)已知是椭圆的两个焦点,O为坐标原点,点在椭圆上,且,圆O是以为直径的圆,直线与圆O相切,并且与椭圆交于不同的两点A、B.

   (1)求椭圆的标准方程;w.w.w.k.s.5.u.c.o.m        

   (2)当时,求弦长|AB|的取值范围.

查看答案和解析>>

(本小题满分12分)已知数列的前n项和Sn满足:

   (1)求的值;

   (2)求数列的通项公式;

   (3)求的值.

查看答案和解析>>

(本小题满分12分)

已知数列中,函数

取得极值。

   (1)求数列的通项公式;w.w.w.k.s.5.u.c.o.m        

   (2)若点的切线始终与OPn平行(O是坐标原点)。求证:当对任意都成立。

查看答案和解析>>

(本小题满分12分)已知a为实数,函数

   (1)若求函数上的最大值和最小值;w.w.w.k.s.5.u.c.o.m        

   (2)若函数的图象上有与x轴平行的切线,求a的取值范围。

查看答案和解析>>

 

一.选择题

(1)D      (2)A     (3)B       (4)C       (5)B     (6)C

(7)B      (8)C     (9)A       (10)C      (11)B    (12)D

二.填空题

(13)4   (14)0.75   (15)9    (16)

三.解答题

(17)解:由

                             

得    又

于是 

      

(18)解:(Ⅰ)设A、B、C分别为甲、乙、丙三台机床各自加工的零件是一等品的事件.

  由①、③得  代入②得  27[P(C)]2-51P(C)+22=0.

解得  (舍去).

将     分别代入 ③、②  可得 

即甲、乙、丙三台机床各加工的零件是一等品的概率分别是

(Ⅱ)记D为从甲、乙、丙加工的零件中各取一个检验,至少有一个一等品的事件,

则 

故从甲、乙、丙加工的零件中各取一个检验,至少有一个一等品的概率为

 

(19)(Ⅰ)证明  因为底面ABCD是菱形,∠ABC=60°,

由PA2+AB2=2a2=PB2   知PA⊥AB.

同理,PA⊥AD,所以PA⊥平面ABCD.

(Ⅱ)解  作EG//PA交AD于G,

由PA⊥平面ABCD.

知EG⊥平面ABCD.作GH⊥AC于H,连结EH,

则EH⊥AC,∠EHG即为二面角的平面角.

又PE : ED=2 : 1,所以

从而    

(Ⅲ)解法一  以A为坐标原点,直线AD、AP分别为y轴、z轴,过A点垂直平面PAD的直线为x轴,建立空间直角坐标系如图.由题设条件,相关各点的坐标分别为

所以

设点F是棱PC上的点,

       令   得

解得      即 时,

亦即,F是PC的中点时,共面.

又  BF平面AEC,所以当F是棱PC的中点时,BF//平面AEC.

解法二  当F是棱PC的中点时,BF//平面AEC,证明如下,

由   知E是MD的中点.

连结BM、BD,设BDAC=O,则O为BD的中点.

所以  BM//OE.  ②

由①、②知,平面BFM//平面AEC.

又  BF平面BFM,所以BF//平面AEC.

证法二

因为 

         

所以  共面.

又 BF平面ABC,从而BF//平面AEC.

(20)解:(Ⅰ)

(i)当a=0时,令

上单调递增;

上单调递减.

(ii)当a<0时,令

上单调递减;

上单调递增;

上单调递减.

(Ⅱ)(i)当a=0时,在区间[0,1]上的最大值是

(ii)当时,在区间[0,1]上的最大值是.

(iii)当时,在区间[0,1]上的最大值是

(21)解:(Ⅰ)依题意,可设直线AB的方程为 代入抛物线方程得   

     ①

设A、B两点的坐标分别是 x2是方程①的两根.

所以     

由点P(0,m)分有向线段所成的比为

又点Q是点P关于原点的对称点,

故点Q的坐标是(0,-m),从而.

               

               

所以 

(Ⅱ)由 得点A、B的坐标分别是(6,9)、(-4,4).

  得

所以抛物线 在点A处切线的斜率为

设圆C的方程是

解之得

所以圆C的方程是 

即 

(22)(Ⅰ)证明:设点Pn的坐标是,由已知条件得

点Qn、Pn+1的坐标分别是:

由Pn+1在直线l1上,得 

所以    即 

(Ⅱ)解:由题设知 又由(Ⅰ)知

所以数列  是首项为公比为的等比数列.

从而 

(Ⅲ)解:由得点P的坐标为(1,1).

所以 

   

(i)当时,>1+9=10.

而此时 

(ii)当时,<1+9=10.

而此时 

 


同步练习册答案