甲.乙.丙三台机床各自独立地加工同一种零件.已知甲机床加工的零件是一等品而乙机床加工的零件不是一等品的概率为,乙机床加工的零件是一等品而丙机床加工的零件不是一等品的概率为,甲.丙两台机床加工的零件都是一等品的概率为.(Ⅰ)分别求甲.乙.丙三台机床各自加工零件是一等品的概率,(Ⅱ)从甲.乙.丙加工的零件中各取一个检验.求至少有一个一等品的概率. 查看更多

 

题目列表(包括答案和解析)

甲、乙、丙三台机床各自独立地加工同一种零件,已知甲机床加工的零件是一等品而乙机床加工的零件不是一等品的概率为
1
4
,乙机床加工的零件是一等品而丙机床加工的零件不是一等品的概率为
1
12
,甲、丙两台机床加工的零件都是一等品的概率为
2
9

(Ⅰ)分别求甲、乙、丙三台机床各自加工零件是一等品的概率;
(Ⅱ)从甲、乙、丙加工的零件中各取一个检验,求至少有一个一等品的概率.

查看答案和解析>>

甲、乙、丙三台机床各自独立地加工同一种零件,已知甲机床加工的零件是一等品而乙机床加工的零件不是一等品的概率为
1
4
,乙机床加工的零件是一等品而丙机床加工的零件不是一等品的概率为
1
12
,甲、丙两台机床加工的零件都是一等品的概率为
2
9

(Ⅰ)分别求甲、乙、丙三台机床各自加工的零件是一等品的概率;
(Ⅱ)若让每台机床各自加工2个零件(共计6个零件),求恰好有3个零件是一等品的概率.

查看答案和解析>>

甲、乙、丙三台机床各自独立地加工同一种零件,已知甲机床加工的零件是一等品而乙机床加工的零件不是一等品的概率为,乙机床加工的零件是一等品而丙机床加工的零件不是一等品的概率为,甲、丙两台机床加工的零件是一等品的概率为

     (1)分别求甲、乙、丙三台各自加工的零件是一等品的概率;

     (2)从甲、乙、丙加工的零件中各取一个检验,求至少有一个一等品的概率。

   

查看答案和解析>>

甲、乙、丙三台机床各自独立地加工同一种零件,已知甲机床加工的零件是一等品而乙机床加工的零件不是一等品的概率为,乙机床加工的零件是一等品而丙机床加工的零件不是一等品的概率为,甲、丙两台机床加工的零件都是一等品的概率为.

(1)分别求甲、乙、丙三台机床各自加工的零件是一等品的概率;

(2)从甲、乙、丙加工的零件中各取一个检验,求至少有一个一等品的概率.

查看答案和解析>>

甲、乙、丙三台机床各自独立地加工同一种零件,已知甲机床加工的零件是一等品而乙机床加工的零件不是一等品的概率为,乙机床加工的零件是一等品而丙机床加工的零件不是一等品的概率为,甲、丙两台机床加工的零件是一等品的概率为

     (1)分别求甲、乙、丙三台各自加工的零件是一等品的概率;

     (2)从甲、乙、丙加工的零件中各取一个检验,求至少有一个一等品的概率。

查看答案和解析>>

 

一.选择题

(1)D      (2)A     (3)B       (4)C       (5)B     (6)C

(7)B      (8)C     (9)A       (10)C      (11)B    (12)D

二.填空题

(13)4   (14)0.75   (15)9    (16)

三.解答题

(17)解:由

                             

得    又

于是 

      

(18)解:(Ⅰ)设A、B、C分别为甲、乙、丙三台机床各自加工的零件是一等品的事件.

  由①、③得  代入②得  27[P(C)]2-51P(C)+22=0.

解得  (舍去).

将     分别代入 ③、②  可得 

即甲、乙、丙三台机床各加工的零件是一等品的概率分别是

(Ⅱ)记D为从甲、乙、丙加工的零件中各取一个检验,至少有一个一等品的事件,

则 

故从甲、乙、丙加工的零件中各取一个检验,至少有一个一等品的概率为

 

(19)(Ⅰ)证明  因为底面ABCD是菱形,∠ABC=60°,

由PA2+AB2=2a2=PB2   知PA⊥AB.

同理,PA⊥AD,所以PA⊥平面ABCD.

(Ⅱ)解  作EG//PA交AD于G,

由PA⊥平面ABCD.

知EG⊥平面ABCD.作GH⊥AC于H,连结EH,

则EH⊥AC,∠EHG即为二面角的平面角.

又PE : ED=2 : 1,所以

从而    

(Ⅲ)解法一  以A为坐标原点,直线AD、AP分别为y轴、z轴,过A点垂直平面PAD的直线为x轴,建立空间直角坐标系如图.由题设条件,相关各点的坐标分别为

所以

设点F是棱PC上的点,

       令   得

解得      即 时,

亦即,F是PC的中点时,共面.

又  BF平面AEC,所以当F是棱PC的中点时,BF//平面AEC.

解法二  当F是棱PC的中点时,BF//平面AEC,证明如下,

由   知E是MD的中点.

连结BM、BD,设BDAC=O,则O为BD的中点.

所以  BM//OE.  ②

由①、②知,平面BFM//平面AEC.

又  BF平面BFM,所以BF//平面AEC.

证法二

因为 

         

所以  共面.

又 BF平面ABC,从而BF//平面AEC.

(20)解:(Ⅰ)

(i)当a=0时,令

上单调递增;

上单调递减.

(ii)当a<0时,令

上单调递减;

上单调递增;

上单调递减.

(Ⅱ)(i)当a=0时,在区间[0,1]上的最大值是

(ii)当时,在区间[0,1]上的最大值是.

(iii)当时,在区间[0,1]上的最大值是

(21)解:(Ⅰ)依题意,可设直线AB的方程为 代入抛物线方程得   

     ①

设A、B两点的坐标分别是 x2是方程①的两根.

所以     

由点P(0,m)分有向线段所成的比为

又点Q是点P关于原点的对称点,

故点Q的坐标是(0,-m),从而.

               

               

所以 

(Ⅱ)由 得点A、B的坐标分别是(6,9)、(-4,4).

  得

所以抛物线 在点A处切线的斜率为

设圆C的方程是

解之得

所以圆C的方程是 

即 

(22)(Ⅰ)证明:设点Pn的坐标是,由已知条件得

点Qn、Pn+1的坐标分别是:

由Pn+1在直线l1上,得 

所以    即 

(Ⅱ)解:由题设知 又由(Ⅰ)知

所以数列  是首项为公比为的等比数列.

从而 

(Ⅲ)解:由得点P的坐标为(1,1).

所以 

   

(i)当时,>1+9=10.

而此时 

(ii)当时,<1+9=10.

而此时 

 


同步练习册答案