1.经历待定系数法应用过程.提高研究数学问题的技能. 查看更多

 

题目列表(包括答案和解析)

如图,抛物线经过三点.

(1)求该抛物线的解析式;

(2)在该抛物线的对称轴上存在一点,使的值最小,求点的坐标以

的最小值;

(3)在轴上取一点,连接.现有一动点以每秒个单位长度的速度从点出发,沿线段向点运动,运动时间为秒,另有一动点以某一速度同时从点出发,沿线段向点运动,当点、点两点中有一点到达终点时,另一点则停止运动(如右图所示).在运动的过程中是否存在一个值,使线段恰好被垂直平分.如果存在,请求出的值和点的速度,如果不存在,请说明理由.

【解析】此题主要考查了用待定系数法求二次函数解析式,以及利用函数图象和图象上点的性质判断符合某一条件的点是否存在,是一道开放性题目,有利于培养同学们的发散思维能力

 

查看答案和解析>>

甲船从A港出发顺流匀速驶向B港,行至某处,发现船上一救生圈不知何时落入水中,立刻原路返回,找到救生圈后,继续顺流驶向B港.乙船从B港出发逆流匀速驶向A港.已知救生圈漂流的速度和水流速度相同;甲、乙两船在静水中的速度相同.甲、乙两船到A港的距离y1y2(km)与行驶时间x(h)之间的函数图象如图所示.

(1)写出乙船在逆流中行驶的速度(2)求甲船在逆流中行驶的路程.

(3)求甲船到A港的距离y1与行驶时间x之间的函数关系式

(4)求救生圈落入水中时,甲船到A港的距离.

【参考公式:船顺流航行的速度船在静水中航行的速度+水流速度,船逆流航行的速度船在静水中航行的速度水流速度.】

【解析】(1)由图可知,乙在4小时内走了24千米,根据路程=速度×时间,可得出其速度.

(2)由图可知2到2.5小时的过程中甲是逆流而行,这0.5小时内甲的速度何乙的速度相同,因此可得出甲走的路程

(3)要求距离首先要求出顺流的速度,可根据甲在0至2小时走的路程-2至2.5小时的路程+2.5至3.5小时的路程=24千米,求出顺流的速度,然后根据不同的x的范围,用待定系数法求出y与x的函数关系式.

(4)根据(3)求出的顺流的速度可求出水流的速度,然后根据船追救生圈的距离+救生圈顺水的距离=二者在掉落时间到追及时间拉开的距离.求出自变量的值,进而求出甲船到A港的距离.

 

查看答案和解析>>

甲船从A港出发顺流匀速驶向B港,行至某处,发现船上一救生圈不知何时落入水中,立刻原路返回,找到救生圈后,继续顺流驶向B港.乙船从B港出发逆流匀速驶向A港.已知救生圈漂流的速度和水流速度相同;甲、乙两船在静水中的速度相同.甲、乙两船到A港的距离y1y2(km)与行驶时间x(h)之间的函数图象如图所示.

(1)写出乙船在逆流中行驶的速度(2)求甲船在逆流中行驶的路程.

(3)求甲船到A港的距离y1与行驶时间x之间的函数关系式

(4)求救生圈落入水中时,甲船到A港的距离.

【参考公式:船顺流航行的速度船在静水中航行的速度+水流速度,船逆流航行的速度船在静水中航行的速度水流速度.】

【解析】(1)由图可知,乙在4小时内走了24千米,根据路程=速度×时间,可得出其速度.

(2)由图可知2到2.5小时的过程中甲是逆流而行,这0.5小时内甲的速度何乙的速度相同,因此可得出甲走的路程

(3)要求距离首先要求出顺流的速度,可根据甲在0至2小时走的路程-2至2.5小时的路程+2.5至3.5小时的路程=24千米,求出顺流的速度,然后根据不同的x的范围,用待定系数法求出y与x的函数关系式.

(4)根据(3)求出的顺流的速度可求出水流的速度,然后根据船追救生圈的距离+救生圈顺水的距离=二者在掉落时间到追及时间拉开的距离.求出自变量的值,进而求出甲船到A港的距离.

 

查看答案和解析>>

已知正比例函数y=kx与反比例函数y=
ax
相交于点A(1,b)、点B(c,-2),求k+a的值.甲同学说:未知数太多,很难求的;乙同学说:可能不是用待定系数法来求;丙说:如果用数形结合的方法,利用两交点在坐标系中位置的特殊性,可以试试.请结合他们的讨论求出k+a=
-4或4
-4或4

查看答案和解析>>

精英家教网九年义务教育三年制初级中学教科书代数第三册中,有以下几段文字:“对于坐标平面内任意一点M,都有唯一的一对有序实数(x,y)和它对应;对于任意一对有序实数(x,y),在坐标平面内都有唯一的一点M和它对应,也就是说,坐标平面内的点与有序实数对是一一对应的.”“一般地,对于一个函数,如果把自变量x与函数y的每对对应值分别作为点的横坐标与纵坐标,在坐标平面内描出相应的点,这些点所组成的图形,就是这个函数的图象.”“实际上,所有一次函数的图象都是一条直线.”“因为两点确定一条直线,所以画一次函数的图象时,只要先描出两点,再连成直线,就可以了.”由此可知:满足函数关系式的有序实数对所对应的点,一定在这个函数的图象上;反之,函数图象上的点的坐标,一定满足这个函数的关系式.另外,已知直线上两点的坐标,便可求出这条直线所对应的一次函数的解析式.
问题1:已知点A(m,1)在直线y=2x-1上,求m的方法是:
 
,∴m=
 
;已知点B(-2,n)在直线y=2x-1上,求n的方法是:
 
,∴n=
 

问题2:已知某个一次函数的图象经过点P(3,5)和Q(-4,-9),求这个一次函数的解析式时,一般先
 
,再由已知条件可得
 
.解得:
 
.∴满足已知条件的一次函数的解析式为:
 
.这个一次函数的图象与两坐标轴的交点坐标为:
 
,在右侧给定的平面直角坐标系中,描出这两个点,并画出这个函数的图象.像解决问题2这样,
 
的方法,叫做待定系数法.

查看答案和解析>>


同步练习册答案