2 勾股定理的应用 课内训练 查看更多

 

题目列表(包括答案和解析)

学习了勾股定理的逆定理,我们知道:在一个三角形中,如果两边的平方和等于第三边的平方,那么这个三角形为直角三角形.类似地,我们定义:对于任意的三角形,设其三个角的度数分别为x°、y°和z°,若满足x2+y2=z2,则称这个三角形为勾股三角形.
(1)根据“勾股三角形”的定义,请你直接判断命题:“直角三角形是勾股三角形”是真命题还是假命题?
(2)已知某一勾股三角形的三个内角的度数从小到大依次为x°、y°和z°,且xy=2160,求x+y的值;
(3)如图,△ABC内接于⊙O,AB=
6
,AC=1+
3
,BC=2,⊙O的直径BE交AC于点D.
①求证:△ABC是勾股三角形;
②求DE的长.

查看答案和解析>>

阅读材料并解答问题:
我国是最早了解和应用勾股定理的国家之一,古代印度、希腊、阿拉伯等许多国家也都很重视对勾股定理的研究和应用,古希腊数学家毕达哥拉斯首先证明了勾股定理,在西方,勾股定理又称为“毕达哥拉斯定理”.
关于勾股定理的研究还有一个很重要的内容是勾股数组,在《几何》课本中我们已经了解到,“能够成为直角三角形三条边的三个正整数称为勾股数”,以下是毕达哥拉斯等学派研究出的确定勾股数组的两种方法:
方法1:若m为奇数(m≥3),则a=m,b=
1
2
(m2-1)和c=
1
2
(m2+1)是勾股数.
方法2:若任取两个正整数m和n(m>n),则a=m2-n2,b=2mn,c=m2+n2是勾股数.
(1)在以上两种方法中任选一种,证明以a,b,c为边长的△ABC是直角三角形;
(2)请根据方法1和方法2按规律填写下列表格:
精英家教网
(3)某园林管理处要在一块绿地上植树,使之构成如下图所示的图案景观,该图案由四个全等的直角三角形组成,要求每个三角形顶点处都植一棵树,各边上相邻两棵树之间的距离均为1米,如果每个三角形最短边上都植6棵树,且每个三角形的各边长之比为5:12:13,那么这四个直角三角形的边长共需植树
 
棵.
精英家教网

查看答案和解析>>

探索与研究:
中国古代的数学家们不仅很早就发现并应用勾股定理,而且很早就尝试对勾股定理作理论的证明.最早对勾股定理进行证明的,是三国时期吴国的数学家赵爽.赵爽创制了一幅“勾股圆方图”,用形数结合的方法,给出了勾股定理的详细证明.在这幅“勾股圆方图”中,以弦为边长得到正方形ABDE是由4个全等的直角三角形再加上中间的那个小正方形组成的.每个直角三角形的面积为ab/2;中间的小正方形边长为b-a,则面积为(b-a)2.于是便可得如下的式子:
S正方形EFGH=c2=(a-b)2+4×
12
ab
所以a2+b2=c2
(1)你能用下面的图形也来验证一下勾股定理吗?试一试!
(2)你自己还能设计一种方法来验证勾股定理吗?
精英家教网精英家教网

查看答案和解析>>

阅读材料:
在平面直角坐标系中,已知x轴上两点A(x1,0),B(x2,0)的距离记作|AB|=|x1-x2|,如果A(x1,y1),B(x2,y2)是平面上任意两点,我们可以通过构造直角三角形来求AB间距离.
如图,过A,B分别向x轴,y轴作垂线AM1、AN1和BM2、BN2,垂足分别是M1(x1,0),N1(0,y1),M2(x2,0),N2(0,y2),直线AN1交BM2于Q点,在Rt△ABQ中,|AB|2=|AQ|2+|QB|2
∵|AQ|=|M1M2|=|x2-x1|,|QB|=|N1N2|=|y2-y1|,∴|AB|2=|x2-x1|2+|y2-y1|2
由此得任意两点[A(x1,y1),B(x2,y2)]间距离公式为:|AB|=
(x2-x1)2+(y2-y1)2

(1)直接应用平面内两点间距离公式计算,点A(1,-3),B(-2,1)之间的距离为
5
5

(2)平面直角坐标系中的两点A(1,3)、B(4,1),P为x轴上任一点,当PA+PB最小时,直接写出点P的坐标为
13
4
,0)
13
4
,0)
,PA+PB的最小值为
5
5

(3)应用平面内两点间距离公式,求代数式
x2+(y-2)2
+
(x-3)2+(y-1)2
的最小值.

查看答案和解析>>

(课改区)将4个红球和若干个白球放入不透明的一个袋子内,摇匀后随机摸出一球,若摸出红球的概率为
2
3
,那么白球的个数为(  )
A、1个B、2个C、3个D、6个

查看答案和解析>>


同步练习册答案