5.课本第105页表15.2.1和图15.2.2是一位同学在抛掷图钉的实验 中画的统计表和折线图.这与你实验的结果相同吗?为什么? 查看更多

 

题目列表(包括答案和解析)

阅读理解并填空:
(1)为了求代数式x2+2x+3的值,我们必须知道x的值.若x=1,则这个代数式的值为______;若x=2,则这个代数式的值为______,…,可见,这个代数式的值因x的取值不同而______(填“变化”或“不变”).尽管如此,我们还是有办法来考虑这个代数式的值的范围.
(2)数学课本第105页这样写“我们把多项式a2+2ab+b2及a2-2ab+b2叫做完全平方式”.在运用完全平方公式进行因式分解时,关键是判断这个多项式是不是一个完全平方式.同样地,把一个多项式进行部分因式分解可以来解决代数式值的最大(或最小)值问题.例如:x2+2x+3=(x2+2x+1)+2=(x+1)2+2,因为(x+1)2是非负数,所以,这个代数式x2+2x+3的最小值是______,这时相应的x的值是______.
(3)求代数式-x2+14x+10的最大(或最小)值,并写出相应的x的值.
(4)求代数式2x2-12x+1的最大(或最小)值,并写出相应的x的值.
(5)已知数学公式,且x的值在数1~4(包含1和4)之间变化,求这时y的变化范围.

查看答案和解析>>

下列说法:
6
是二次根式,但不是整式;
②方程x2-x-k=0的根为x1,2=
1+4k
2

③若ac<0,则方程ax2+bx+c=0方程必有实数根;
④课本第54页观察与猜想讨论了一元二次方程根与系数的关系,根据这一关系得方程x2-3x+5=0的两根和是3,两根积是5.
其中错误的有(  )

查看答案和解析>>

数形结合作为一种数学思想方法,数形结合的应用大致又可分为两种情形:或者借助于数的精确性来阐明形的某些属性,即“以数解形”;或者借助形的几何直观性来阐明数之间的某种关系,即“以形助数”.
如浙教版九上课本第109页作业题第2题:如图1,已知在△ABC中,∠ACB=90°,CD⊥AB,D为垂足.易证得两个结论:(1)AC•BC=AB•CD   (2)AC2=AD•AB
(1)请你用数形结合的“以数解形”思想来解:如图2,已知在△ABC中(AC>BC),∠ACB=90°,CD⊥AB,D为垂足,CM平分∠ACB,且BC、AC是方程x2-14x+48=0的两个根,求AD、MD的长.
(2)请你用数形结合的“以形助数”思想来解:设a、b、c、d都是正数,满足a:b=c:d,且a最大.求证:a+d>b+c(提示:不访设AB=a,CD=d,AC=b,BC=c,构造图1)
精英家教网

查看答案和解析>>

在我们刚刚学过的九年级数学下册课本第11页,用“描点法”画某个二次函数图象时,列了如下表格:
x 3 4 5 6 7 8
y 7.5 5 3.5 3 3.5 5
根据表格上的信息回答问题:该二次函数在x=9时,y=
7.5
7.5

查看答案和解析>>

精英家教网如图,这是我国古代一个数学家构造的“勾股圆方图”(见课本第76页),他第一个利用此图证明了“勾股定理”.这个数学家是(  )
A、祖冲之B、杨辉C、赵爽D、华罗庚

查看答案和解析>>


同步练习册答案