下图是否为旋转对称图形?如果是.请找出它的旋转中心.旋转多少度后能与自身重合. 分析:利用半透明纸和图钉操作.可以发现它的确是旋转对称图形.它外围的六个点与中心的距离相等.并且可以看成以中心为圆心.以外围一个点到中心的距离长为半径的圆的六等分点. 解:它的旋转中心是它的中心.旋转60°后能与自身重合.或且旋转120°后能与自身重合.或且旋转180°后能与自身重合.或且旋转240°后能与自身重合.所以它是旋转对称图形. 查看更多

 

题目列表(包括答案和解析)

观察图所示的图形并回答下列问题:

    (1)图案是否是轴对称图形,如果是,图案有几对对称轴?

    (2)图案是否是中心对称图形?为什么?找出对称中心.

(3)图案绕中心旋转多少度能和原来的图案重合?

查看答案和解析>>

如图,在平面直角坐标系中,O是坐标原点,点A、B的坐标分别为精英家教网A(0,3)和B(5,0),连接AB.
(1)现将△AOB绕点O按逆时针方向旋转90°,得到△COD,(点A落到点C处),请画出△COD,并求经过B、C、D三点的抛物线对应的函数关系式;
(2)将(1)中抛物线向右平移两个单位,点B的对应点为点E,平移后的抛物线与原抛物线相交于点F、P为平移后的抛物线对称轴上一个动点,连接PE、PF,当|PE-PF|取得最大值时,求点P的坐标;
(3)在(2)的条件下,当点P在抛物线对称轴上运动时,是否存在点P使△EPF为直角三角形?如果存在,请求出点P的坐标;如果不存在,请说明理由.

查看答案和解析>>

如图,在平面直角坐标系中,O是坐标原点,点A、B的坐标分别为A(0,3)和B(5,0),连接AB.
(1)现将△AOB绕点O按逆时针方向旋转90°,得到△COD,(点A落到点C处),请画出△COD,并求经过B、C、D三点的抛物线对应的函数关系式;
(2)将(1)中抛物线向右平移两个单位,点B的对应点为点E,平移后的抛物线与原抛物线相交于点F、P为平移后的抛物线对称轴上一个动点,连接PE、PF,当|PE-PF|取得最大值时,求点P的坐标;
(3)在(2)的条件下,当点P在抛物线对称轴上运动时,是否存在点P使△EPF为直角三角形?如果存在,请求出点P的坐标;如果不存在,请说明理由.

查看答案和解析>>

如图,在平面直角坐标系中,O是坐标原点,点A、B的坐标分别为A(0,3)和B(5,0),连接AB。
(1)现将△AOB绕点O按逆时针方向旋转90°,得到△COD(点A落到点C处),求经过B、C、D三点的抛物线的解析式;
(2)将(l)中抛物线向右平移两个单位长度,点B的对应点为点E,平移后的抛物线与抛物线相交于点F,P为平移后的抛物线对称轴上一个动点,连接PE、PF,当|PE-PF|取得最大值时,求点P的坐标;
(3)在(2)的条件下,当点P在抛物线对称轴上运动时,是否存在点P使△EPF为直角三角形?如果存在,请求出点P的坐标;如果不存在,请说明理由。

查看答案和解析>>

(2010•崇文区二模)如图,在平面直角坐标系中,O是坐标原点,点A、B的坐标分别为A(0,3)和B(5,0),连接AB.
(1)现将△AOB绕点O按逆时针方向旋转90°,得到△COD,(点A落到点C处),请画出△COD,并求经过B、C、D三点的抛物线对应的函数关系式;
(2)将(1)中抛物线向右平移两个单位,点B的对应点为点E,平移后的抛物线与原抛物线相交于点F、P为平移后的抛物线对称轴上一个动点,连接PE、PF,当|PE-PF|取得最大值时,求点P的坐标;
(3)在(2)的条件下,当点P在抛物线对称轴上运动时,是否存在点P使△EPF为直角三角形?如果存在,请求出点P的坐标;如果不存在,请说明理由.

查看答案和解析>>


同步练习册答案