17.证明: 原式=31998= 31998×7. ∴ 能被7整除. 查看更多

 

题目列表(包括答案和解析)

(2012•十堰)阅读材料:
例:说明代数式
x2+1
+
(x-3)2+4
的几何意义,并求它的最小值.
解:
x2+1
+
(x-3)2+4
=
(x-0)2+12
+
(x-3)2+22
,如图,建立平面直角坐标系,点P(x,0)是x轴上一点,则
(x-0)2+12
可以看成点P与点A(0,1)的距离,
(x-3)2+22
可以看成点P与点B(3,2)的距离,所以原代数式的值可以看成线段PA与PB长度之和,它的最小值就是PA+PB的最小值.
设点A关于x轴的对称点为A′,则PA=PA′,因此,求PA+PB的最小值,只需求PA′+PB的最小值,而点A′、B间的直线段距离最短,所以PA′+PB的最小值为线段A′B的长度.为此,构造直角三角形A′CB,因为A′C=3,CB=3,所以A′B=3
2
,即原式的最小值为3
2

根据以上阅读材料,解答下列问题:
(1)代数式
(x-1)2+1
+
(x-2)2+9
的值可以看成平面直角坐标系中点P(x,0)与点A(1,1)、点B
(2,3)
(2,3)
的距离之和.(填写点B的坐标)
(2)代数式
x2+49
+
x2-12x+37
的最小值为
10
10

查看答案和解析>>

判断下面两道题做的是否正确,对的在
 
内打“√”,错的打“×”,若错误,请把正确的订正出来.
(1)14-22÷10            
解:原式=14-4÷10---
 

=10÷10---
 

=1---
 

(2)[-32×(-
1
3
) 2-0.8]
÷(-5
2
5
)

解:原式=(-2×2-0.8)÷(-5
2
5
)--
 

=-4-0.8÷(-5
2
5
)--------
 

=-
112
27
------------
 

查看答案和解析>>

阅读下面解题过程:
计算:(-15)÷(
1
3
-
3
2
-3)×6

解:原式=(-15)÷(-
25
6
×6)
(第一步)=(-15)÷(-25)(第二步)=-
3
5
(第三步)
回答:(1)上面解题过程中有两个错误,第一处是第
 
步,错误的原因是
 
,第二处是第
 
步,错误的原因是
 

(2)正确的结果是
 

查看答案和解析>>

先阅读下列材料,再解答后面的问题:
要求算式2+22+23+24+…+210的值,我们可以按照如下方法进行:
设2+22+23+24+…+210=S  ①,则有2(2+22+23+24+…+210)=2S
∴22+23+24+…+210+211=2S    ②
②-①得:211-2=S∴2(210-1)=S
∴原式:2+22+23+24+…+210=2(210-1)
(一)请你根据上述方法计算:1+1.32+1.33+1.34+…+1.39=
1.310-1.39
0.3
1.310-1.39
0.3

(二)2008年美国的金融危机引发了波及全世界的经济危机,我国也在此次经济危机中深受影响,为此2009年我国积极理性的放宽信贷,帮助我国企业、特别是中小企业度过难关,尽最大努力减少我国的失业率.某企业在应对此次危机时积极进取,决定贷款进行技术改造,现有两种方案,
甲方案:一次性贷款10万元,第一年便可获利1万元,以后每年获利比前一年增加30%的利润;
乙方案:每年贷款1万元,第一年可获利1万元,以后每年获利比前一年增加5千元;
两种方案的使用期都是10年,到期一次性归还本息.若银行两种形式的贷款都按年息5%的复利计算,试比较两种方案中,10年的总利润,哪种获利更多?(结果精确到0.01)
(取1.0510=1.629,1.310=13.786,1.510=57.665 )
(注意:‘复利’的计算方法,例如:一次性贷款7万元,按年息5%的复利计算;
(1)若1年后归还本息,则要还7(1+5%)元.
(2)若2年后归还本息,则要还7(1+5%)2元.
(3)若3年后归还本息,则要还7(1+5%)3元.

查看答案和解析>>

化简求值.
先化简
a2-4
a2+4a+4
-
a
a+2
,再求a=-
3
2
时原式的值.

查看答案和解析>>


同步练习册答案