认知难点与突破方法 教学难点是灵活应用分式的基本性质将分式变形. 突破的方法是通过复习分数的通分.约分总结出分数的基本性质.再用类比的方法得出分式的基本性质.应用分式的基本性质导出通分.约分的概念.使学生在理解的基础上灵活地将分式变形. 查看更多

 

题目列表(包括答案和解析)

(本题9分)如图,△ABC是直角三角形,∠ACB=90°.

(1)实践与操作 利用尺规按下列要求作图,并在图中标明相应的字母(保留作图痕迹,不写作法).

①作△ABC的外接圆,圆心为O;

②以线段AC为一边,在AC的右侧作等边△ACD;

③连接BD,交⊙O于点F,连接AE,

(2)综合与运用  在你所作的图中,若AB=4,BC=2,则:

①AD与⊙O的位置关系是______.(2分)

②线段AE的长为__________.(2分)

 

查看答案和解析>>

(本题9分)如图,△ABC是直角三角形,∠ACB=90°.

(1)实践与操作 利用尺规按下列要求作图,并在图中标明相应的字母(保留作图痕迹,不写作法).

①作△ABC的外接圆,圆心为O;

②以线段AC为一边,在AC的右侧作等边△ACD;

③连接BD,交⊙O于点F,连接AE,

(2)综合与运用  在你所作的图中,若AB=4,BC=2,则:

①AD与⊙O的位置关系是______.(2分)

②线段AE的长为__________.(2分)

 

查看答案和解析>>

(本题9分)如图,△ABC是直角三角形,∠ACB=90°.
(1)实践与操作利用尺规按下列要求作图,并在图中标明相应的字母(保留作图痕迹,不写作法).
①作△ABC的外接圆,圆心为O;
②以线段AC为一边,在AC的右侧作等边△ACD;
③连接BD,交⊙O于点F,连接AE,
(2)综合与运用 在你所作的图中,若AB=4,BC=2,则:
①AD与⊙O的位置关系是______.(2分)
②线段AE的长为__________.(2分)

查看答案和解析>>

(本题9分)如图,△ABC是直角三角形,∠ACB=90°.

(1)实践与操作 利用尺规按下列要求作图,并在图中标明相应的字母(保留作图痕迹,不写作法).

①作△ABC的外接圆,圆心为O;

②以线段AC为一边,在AC的右侧作等边△ACD;

③连接BD,交⊙O于点F,连接AE,

(2)综合与运用  在你所作的图中,若AB=4,BC=2,则:

①AD与⊙O的位置关系是______.(2分)

②线段AE的长为__________.(2分)

 

查看答案和解析>>

(本题9分)如图,△ABC是直角三角形,∠ACB=90°.
(1)实践与操作利用尺规按下列要求作图,并在图中标明相应的字母(保留作图痕迹,不写作法).
①作△ABC的外接圆,圆心为O;
②以线段AC为一边,在AC的右侧作等边△ACD;
③连接BD,交⊙O于点F,连接AE,
(2)综合与运用 在你所作的图中,若AB=4,BC=2,则:
①AD与⊙O的位置关系是______.(2分)
②线段AE的长为__________.(2分)

查看答案和解析>>


同步练习册答案