3.P11习题16.1的第5题是:不改变分式的值.使下列分式的分子和分母都不含“- 号.这一类题教材里没有例题.但它也是由分式的基本性质得出分子.分母和分式本身的符号.改变其中任何两个.分式的值不变. “不改变分式的值.使分式的分子和分母都不含`-’号 是分式的基本性质的应用之一.所以补充例5. 查看更多

 

题目列表(包括答案和解析)

某课题小组对课本的习题进行了如下探索,请逐步思考并解答:

1.(1)(人教版教材习题24.4的第2题)如图1,两个大小一样的传送轮连接着一条传送带,两个传动轮中心的距离是10m,求这条传送带的长­­­_________.

2.(2)改变图形的数量;

如图2、将传动轮增加到3个,每个传动轮的直径是3m,每两个传动轮中心的距离是10m, 求这条传送带的长­­­­­­­­__________.

3.(3)改变动态关系,将静态问题升华为动态问题:

如图3,一个半径为1cm的⊙P沿边长为2πcm的等边三角形△ABC的外沿作无滑动滚动一周,求圆心P经过的路径长?⊙P自转了多少周?

4.(4) 拓展与应用

如图4,一个半径为1cm的⊙P沿半径为3cm的⊙O外沿作无滑动滚动一周,则⊙P自转了多少周?

 

查看答案和解析>>

某课题小组对课本的习题进行了如下探索,请逐步思考并解答:
【小题1】(1)(人教版教材习题24.4的第2题)如图1,两个大小一样的传送轮连接着一条传送带,两个传动轮中心的距离是10m,求这条传送带的长­­­_________.
【小题2】(2)改变图形的数量;
如图2、将传动轮增加到3个,每个传动轮的直径是3m,每两个传动轮中心的距离是10m, 求这条传送带的长­­­­­­­­__________.

【小题3】(3)改变动态关系,将静态问题升华为动态问题:
如图3,一个半径为1cm的⊙P沿边长为2πcm的等边三角形△ABC的外沿作无滑动滚动一周,求圆心P经过的路径长?⊙P自转了多少周?
【小题4】(4) 拓展与应用
如图4,一个半径为1cm的⊙P沿半径为3cm的⊙O外沿作无滑动滚动一周,则⊙P自转了多少周?

查看答案和解析>>

某课题小组对课本的习题进行了如下探索,请逐步思考并解答

1.(人教版教材习题24.4的第2题)如图1,两个大小一样的传送轮连接着一条传送带,两个传动轮中心的距离是10m,求这条传送带的长­­­_________.[

2.如图2、将传动轮增加到3个,每个传动轮的直径是3m,每两个传动轮中心的距离是10m, 求这条传送带的长­­­­­­ ­­__________.

3.改变动态关系,将静态问题升华为动态问题:

如图3,一个半径为1cm的⊙P沿边长为2πcm的等边三角形△ABC的外沿作无滑动滚动一周,求圆心P经过的路径长?⊙P自转了多少周?

4.拓展与应用

如图4,一个半径为1cm的⊙P沿半径为3cm的⊙O外沿作无滑动滚动一周,则⊙P自转了多少周?

 

查看答案和解析>>

某课题小组对课本的习题进行了如下探索,请逐步思考并解答:

1.(1)(人教版教材习题24.4的第2题)如图1,两个大小一样的传送轮连接着一条传送带,两个传动轮中心的距离是10m,求这条传送带的长­­­_________.

2.(2)改变图形的数量;

如图2、将传动轮增加到3个,每个传动轮的直径是3m,每两个传动轮中心的距离是10m, 求这条传送带的长­­­­­­ ­­__________.

3.(3)改变动态关系,将静态问题升华为动态问题:

如图3,一个半径为1cm的⊙P沿边长为2πcm的等边三角形△ABC的外沿作无滑动滚动一周,求圆心P经过的路径长?⊙P自转了多少周?

4.(4) 拓展与应用

如图4,一个半径为1cm的⊙P沿半径为3cm的⊙O外沿作无滑动滚动一周,则⊙P自转了多少周?

 

查看答案和解析>>

某课题小组对课本的习题进行了如下探索,请逐步思考并解答

1.(人教版教材习题24.4的第2题)如图1,两个大小一样的传送轮连接着一条传送带,两个传动轮中心的距离是10m,求这条传送带的长­­­_________.[

2.如图2、将传动轮增加到3个,每个传动轮的直径是3m,每两个传动轮中心的距离是10m, 求这条传送带的长­­­­­­­­__________.

3.改变动态关系,将静态问题升华为动态问题:

如图3,一个半径为1cm的⊙P沿边长为2πcm的等边三角形△ABC的外沿作无滑动滚动一周,求圆心P经过的路径长?⊙P自转了多少周?

4.拓展与应用

如图4,一个半径为1cm的⊙P沿半径为3cm的⊙O外沿作无滑动滚动一周,则⊙P自转了多少周?

 

查看答案和解析>>


同步练习册答案