11.如图.E.F分别在正方形ABCD的边AD.CD上.且∠FBC=∠EBF. 求证:BE=AE+CF. 查看更多

 

题目列表(包括答案和解析)

25、在正方形ABCD中,已知点E、F分别在边AD、DC的延长线上,且DE=CF,连接BE、AF相交于点P,(如图1)
(1)试说明:AF=BE;
(2)求∠BPF的度数;
(3)若将正方形ABCD变为等腰梯形ABCD,且AD∥BC,AB=AD=DC,∠BCD=50°,其它条件不变(如图2),求∠BPF的度数.

查看答案和解析>>

在正方形ABCD中,已知点E、F分别在边AD、DC的延长线上,且DE=CF,连接BE、AF相交于点P,(如图1)
(1)试说明:AF=BE;
(2)求∠BPF的度数;
(3)若将正方形ABCD变为等腰梯形ABCD,且AD∥BC,AB=AD=DC,∠BCD=50°,其它条件不变(如图2),求∠BPF的度数.

查看答案和解析>>

正方形ABCD中,E是CD边上一点,
(1)将△ADE绕点A按顺时针方向旋转,使AD、AB重合,得到△ABF,如图1所示.观察可知:与DE相等的线段是
BF
BF
,∠AFB=∠
AED
AED

(2)如图2,正方形ABCD中,P、Q分别是BC、CD边上的点,且∠PAQ=45°,试通过旋转的方式说明:DQ+BP=PQ
(3)在(2)题中,连接BD分别交AP、AQ于M、N,你还能用旋转的思想说明BM2+DN2=MN2

查看答案和解析>>

正方形ABCD中,点E、F分别是边AD、AB的中点,连接EF.

(1)如图1,若点G是边BC的中点,连接FG,则EF与FG关系为:      

(2)如图2,若点P为BC延长线上一动点,连接FP,将线段FP以点F为旋转中心,逆时针旋转900,得到线段FQ,连接EQ,请猜想EF、EQ、BP三者之间的数量关系,并证明你的结论;

(3)若点P为CB延长线上一动点,按照(2)中的作法,在图3中补全图形,并直接写出EF、EQ、BP三者之间的数量关系:      .

 

查看答案和解析>>

正方形ABCD中,E是CD边上一点,
(1)将△ADE绕点A按顺时针方向旋转,使AD、AB重合,得到△ABF,如图1所示.观察可知:与DE相等的线段是______,∠AFB=∠______
(2)如图2,正方形ABCD中,P、Q分别是BC、CD边上的点,且∠PAQ=45°,试通过旋转的方式说明:DQ+BP=PQ
(3)在(2)题中,连接BD分别交AP、AQ于M、N,你还能用旋转的思想说明BM2+DN2=MN2

查看答案和解析>>


同步练习册答案