活动2 问题:我们已知道.一次函数y=kx+b的图象是一条直线.那么反比例函数y=的图象是什么样呢?1. 尝试 用描点法来画出反比例函数的图象. 例2: 画出反比例函数y=和y=-的图象. 解:列表 x - -6 -5 -4 -3 -2 -1 1 2 3 4 5 6 - y= -1 -1.5 -2 -6 3 1 y=- 1 1.2 3 6 -1.5 描点.以表中各对应值为坐标.在直角坐标系中描出各点. 连线.用平滑的曲线把所描的点依次连接起来. 查看更多

 

题目列表(包括答案和解析)

23、阅读材料并解答问题:
我们已经知道,完全平方公式可以用平面几何图形的面积来表示,实际上还有一些代数等式也可以用这种形式表示.例如:(2a+b)(a+b)=2a2+3ab+b2就可以用图①或图②等图形的面积来表示.
(1)请写出图③所表示的等式:
(a+2b)(2a+b)=2a2+5ab+2b2

(2)试画出一个几何图形,使它的面积能表示:(a+b)(a+3b)=a2+4ab+3b2
(请仿照图①或图②在几何图形上标出有关数量).

查看答案和解析>>

25、阅读材料并解答问题:
我们已经知道,完全平方公式可以用平面几何图形的面积来表示,实际上还有一些代数等式也可以用这种形式表示.例如:(2a+b)(a+b)=2a2+3ab+b2就可以用图①或图②等图形的面积来表示

(1)请写出图③所表示的等式:
(2a+b)(a+2b)=2a2+5ab+2b2

(2)如图所示的长方形或正方形三类卡片各有若干张,请你用这些卡片,拼成一个长方形或正方形图形.要求:所拼图形中每类卡片都要有,卡片之间不能重叠,画出示意图,并写出你发现的等式.(请仿照上图在几何图形上标出有关数量).

你发现的等式是
(a+b)(a+b)=a2+2ab+b2

查看答案和解析>>

阅读材料,并解答问题:
我们已经学过了一元一次不等式的解法,对于一些特殊的不等式,我们用作函数图象的方法求出它的解集,这也是《数学新课程标准》中所要求掌物的内容.例如:如何求不等式
3
x
>x+2的解集呢我们可以设y1=
3
x
,y2=x+2.然后求出它们的交点的坐标,并在同一直角坐标系中画出它们的函数图象,通过看图,可以发现此不等式的解集是“x<-3或0<x<1”
用上面的知识解决问题:求不等式x2-x>x+3的解集.
(1)设函数y1=
 
;y2=
 

(2)两个函数图象的交点坐标为
 

(3)在所给的直角坐标系中画出两个函数的图象(不要列表).
(4)观察发现:不等式x2-x>x+3的解集为
 

查看答案和解析>>

问题背景

若矩形的周长为1,则可求出该矩形面积的最大值.我们可以设矩形的一边长为x,面积为s,则s与x的函数关系式为: ,利用函数的图象或通过配方均可求得该函数的最大值.

提出新问题

若矩形的面积为1,则该矩形的周长有无最大值或最小值?若有,最大(小)值是多少?

分析问题

若设该矩形的一边长为x,周长为y,则y与x的函数关系式为:,问题就转化为研究该函数的最大(小)值了.

解决问题

借鉴我们已有的研究函数的经验,探索函数的最大(小)值.

(1)实践操作:填写下表,并用描点法画出函数的图象:

 

x

···

1

2

3

4

···

y

 

 

 

 

 

 

 

 

 

 

 

(2)观察猜想:观察该函数的图象,猜想当x=         时,函数有最    值(填

“大”或“小”),是          .

(3)推理论证:问题背景中提到,通过配方可求二次函数的最大值,请你尝试通过配方求函数的最大(小)值,以证明你的猜想. 〔提示:当时,

 

查看答案和解析>>

 阅读材料,并解答问题。 

我们已经学过了一元一次不等式的解法,对于一些特殊的不等式,我们用作函数图象的方法求出它的解集,这也是《数学新课程标准》中所要求掌物的内容。例如:如何求不等式﹥x+2的解集呢? 我们可以设=,=x+2.然后求出它们的交点的坐标, 并在同一直角坐标系中画出它们的函数图象,通过看图,可以发现此不等式的解集是“xく-3或0くxく1” 用上面的知识解决问题:求不等式x-x>x+3的解集. 

(1)设函数=              ,    =                    

(2)两个函数图象的交点坐标为                    

(3)在所给的直角坐标系中画出两个函数的图象(不要列表). 

(4)观察发现:不等式x-x>x+3的解集为               

 

查看答案和解析>>


同步练习册答案