引入新课 上节课我们学习了实际问题与反比例函数.使我们认识到了反比例函数在现实生活中的实际存在.今天我们将继续学习这一部分内容.请看例1. 例1码头工人以每天30吨的速度往一艘轮船上装载货物.把轮船装载完毕恰好用了8天时间.轮船到达目的地后开始卸货.卸货速度v与卸货时间t(天)之间有怎样的关系? 由于紧急情况.船上货物必须在不超过5日内卸载完毕.那么每天至少卸货多少吨? 查看更多

 

题目列表(包括答案和解析)

(1)新人教版初中数学教材中我们学习了:若关于x的一元二次方程ax2+bx+c=0的两根为x1,x2,则x1+x2=-
b
a
x1x2=
c
a
.根据这一性质,我们可以求出已知方程关于x1,x2的代数式的值.例如:已知x1,x2为方程x2-2x-1=0的两根,则x1+x2=
 
,x1•x2=
 
.那么x12+x22=(x1+x22-2x1x2=
 

请你完成以上的填空.
(2)阅读材料:已知m2-m-1=0,n2+n-1=0,且mn≠1.求
mn+1
n
的值.
解:由n2+n-1=0可知n≠0.
1+
1
n
-
1
n2
=0
.∴
1
n2
-
1
n
-1=0

又m2-m-1=0,且mn≠1,即m≠
1
n

∴m,
1
n
是方程x2-x-1=0的两根.∴m+
1
n
=1
.∴
mn+1
n
=1.
(3)根据阅读材料所提供的方法及(1)的方法完成下题的解答.
已知2m2-3m-1=0,n2+3n-2=0,且mn≠1.求m2+
1
n2
的值.

查看答案和解析>>

(1)新人教版初中数学教材中我们学习了:若关于x的一元二次方程ax2+bx+c=0的两根为x1,x2,则.根据这一性质,我们可以求出已知方程关于x1,x2的代数式的值.例如:已知x1,x2为方程x2-2x-1=0的两根,则x1+x2=______,x1•x2=______.那么x12+x22=(x1+x22-2x1x2=______.
请你完成以上的填空.
(2)阅读材料:已知m2-m-1=0,n2+n-1=0,且mn≠1.求的值.
解:由n2+n-1=0可知n≠0.
.∴
又m2-m-1=0,且mn≠1,即
∴m,是方程x2-x-1=0的两根.∴.∴=1.
(3)根据阅读材料所提供的方法及(1)的方法完成下题的解答.
已知2m2-3m-1=0,n2+3n-2=0,且mn≠1.求的值.

查看答案和解析>>

(1)新人教版初中数学教材中我们学习了:若关于x的一元二次方程ax2+bx+c=0的两根为x1,x2,则.根据这一性质,我们可以求出已知方程关于x1,x2的代数式的值.例如:已知x1,x2为方程x2-2x-1=0的两根,则x1+x2=______,x1•x2=______.那么x12+x22=(x1+x22-2x1x2=______.
请你完成以上的填空.
(2)阅读材料:已知m2-m-1=0,n2+n-1=0,且mn≠1.求的值.
解:由n2+n-1=0可知n≠0.
.∴
又m2-m-1=0,且mn≠1,即
∴m,是方程x2-x-1=0的两根.∴.∴=1.
(3)根据阅读材料所提供的方法及(1)的方法完成下题的解答.
已知2m2-3m-1=0,n2+3n-2=0,且mn≠1.求的值.

查看答案和解析>>

在有理数的运算中,我们学习了数轴,那么数轴是(  )

查看答案和解析>>

2、我们学习了数据收集,下列正确的是(  )

查看答案和解析>>


同步练习册答案