负指数幂 我们再来考察被除数的指数小于除数的指数的情况. 例如考察下列算式: 52÷55. 103÷107. 一方面.如果仿照同底数幂的除法公式来计算.得 52÷55=52-5=5-3. 103÷107=103-7=10-4. 另一方面.我们可利用约分.直接算出这两个式子的结果为 52÷55=== 自主探究.合作交流思想:任何不等于零的数的-n 次幂.等于这个数的n 次幂的倒数. 103÷107=== 概 括:由此启发.我们规定: 5-3=. 10-4=. 一般地.我们规定: 这就是说.任何不等于零的数的-n 次幂.等于这个数的n 次幂的倒数. 查看更多

 

题目列表(包括答案和解析)

阅读理解题:
我们学习了二次根式的概念及其基本性质,又学习了二次根式的乘法运算法则,下面我们再来思考下面的问题:
(1)计算:
2
2
=
2
2
3
3
=
3
3
12
3
=
6
6
;显然将一个二次根式乘以一个适当的二次根式后结果不再含有根号.因此利用这个性质结合二次根式除法法则、分式基本性质可以化去分母中的根号,使分母中不再含有根号,如:
2
3
=
2
3
3
3
=
6
3

试一试:化简:①
1
12
=
1•
3
12
3
1•
3
12
3
=
3
6
3
6
;②
2
6
=
2
6
6
6
2
6
6
6
=
3
3
3
3

(2)计算:(2﹢
3
)(2-
3
)=
1
1
;(
6
2
)(
6
-
2
)=
4
4
;同样发现相乘的积不再含有根号.想一想:(
7
-3)(
7
+3
7
+3
)使其结果不再含有根号;同样请你仿照(1)的方法将下列二次根式化简:
1
5
-2

查看答案和解析>>

阅读理解题:
我们学习了二次根式的概念及其基本性质,又学习了二次根式的乘法运算法则,下面我们再来思考下面的问题:
(1)计算:数学公式数学公式=______;数学公式数学公式=______;数学公式数学公式=______;显然将一个二次根式乘以一个适当的二次根式后结果不再含有根号.因此利用这个性质结合二次根式除法法则、分式基本性质可以化去分母中的根号,使分母中不再含有根号,如:数学公式=数学公式=数学公式
试一试:化简:①数学公式=______=______;②数学公式=______=______;
(2)计算:(2﹢数学公式)(2-数学公式)=______;(数学公式数学公式)(数学公式-数学公式)=______;同样发现相乘的积不再含有根号.想一想:(数学公式-3)(______)使其结果不再含有根号;同样请你仿照(1)的方法将下列二次根式化简:数学公式

查看答案和解析>>

在数学文化节第一轮活动中,我们以探讨一个趣题的方式纪念了数学大师欧拉诞辰300周年.著名数学家拉普拉斯说过:“读读欧拉,他是我们所有人的导师.”是啊!欧拉在数学上的贡献实在太多了,即使在初等数学中也到处可见他的身影.我们再来看看欧拉研究过的“36军官问题”:
从6支部队中各选出6名不同军衔的军官,将这36名军官排成一个6行6列的方阵,要求每行每列的6个军官分别来自不同的部队,并具有不同的军衔.用大写字母A,B,C,D,E,F分别表示6支不同的部队,用小写字母a,b,c,d,e,f分别表示6种不同的军衔,于是问题转化为:在6×6的方格阵中,每个方格分别填入一个大写字母和一个小写字母,使每行和每列中的大小写字母只能各出现一次(通常称这种方阵为欧拉方阵或正交拉丁方).欧拉搅尽脑汁,也没能排出符合要求的6×6方阵,他猜想并不存在这样的6×6方阵.100多年以后,才有人证明了欧拉的这个猜想是正确的.
于是欧拉继而探究了其他情形,例如,他分别作出了3×3,4×4,5×5正交拉丁方,并证明了当n除以4的余数不等于2时,n×n正交拉丁方是存在的.
正交拉丁方在药品配方试验设计等方面有着广泛应用.现在流行的“数独”游戏和比赛,就是发源于拉丁方问题呢!
如图是一个5×5正交拉丁方,请将剩余的字母填上

查看答案和解析>>

用语言叙述代数式
1
x
-2表达式不正确的是(  )

查看答案和解析>>

把代数式“
1
x
-2
”用文字语言叙述,其中表述不正确的是(  )
A、比x的倒数小2的数
B、x与2的差的倒数
C、x的倒数与2的差
D、1除以x的商与2的差

查看答案和解析>>


同步练习册答案