合作探究 (1)整体感知 为了解决本节课开始提出的问题和验证同学们在上节课实践活动中提出的猜想­,本节课我们着重探讨了一次函数具有的相关性质. (2)四边互动 互动1 师:利用多媒体演示课件:一次函数图象上的点与两条坐标轴上的对应点做同步­运动的动画. 请同学们观察函数图象上的点与两条坐标轴上对应点做同步运动的动画. 通过观察同学们发现什么现象? 生:讨论.交流,并举手逐个回答,不断补充完善. 师:函数y=3x-2的图象是否也有这种现象? 生:在自主探索的基础上合作交流. 师:对于函数y=kx+b,当k>0时,结果是否与上述一样? 生:讨论后举手回答. 明确 如图17-3-9所示,在函数的图象中,我们看到:当一个点在直线上从左向­右移动时,它的位置也在逐步从低到高变化(函数y的值也从小变­到大)──图象自左向右是上升的,函数值y随自变量x的增大而增大. 对于函数y=kx+b,当k>0时,y随自变量x的增大而增大,图象自左向右是上­升的. 互动2 师:再观察函数y=-x+2和y=-x-1的图象,研究它们是否也有相应的性质,有什么­不同?你能否发现什么规律? 生:动手画图,对照图象进行探索,相互交流达成共识,然后举手回答发现的现象. 师:利用多媒体课件演示函数图象,验证学生发现结论. 师:对于函数y=kx+b,当k<0时,你能归纳出它的性质吗? 明确 在函数y=-x+2和y=-x-1的图象中,我们看到:当一个点在直线上从左向­右移动时,它的位置也在逐步从高到低变化(函数y的值也从大变­到小)──图象自左向右是下降的,函数值y随自变量x的增大而减小. 对于函数y=kx+b,当k<0时,y随自变量x的增大而减小,图象自左向右是下­降的. 概括归纳得: 一次函数y=kx+b有下列性质: (1)当k>0时,y随x的增大而增大,这时函数的图象从左到右上升; (2)当k<0时,y随x的增大而 减小,这时函数的图象从左到右 下降. 互动3 师:请同学们思考:这些性质在问题1和问题2中,反映怎样的实际意义? 生:对照课本第39.40页问题1和问题2,结合一次函数的性质进行讨论. 明确 在问题1中,函数解析式为s=-95t+570,由于k=-95<0,表明s随着t的增大­而减小,即汽车距北京的路程随着行驶时间的增大而缩短. 在问题2中,函数解析式为y=-12x+50,由于k=12>0,表明y随着x的增大而增大,即­小张在银行的存款数随着存款时间月份数的增大而增多. 互动4 师:利用多媒体演示. 做一做:画出函数y=-x+2的图象,结合图象回答下列问题. (1)这个函数中,随着x的增大,y将增大还是减小?它的图象从左到右怎样变化? (2)当x取何值时,y=0? (3)当x取何值时,y>0? 生:动手画图,并对照图象解答提出的问题,再在四人小组中展开交流. 明确 函数y=-2x+2的图象如图17-3-11所示(1)由于自变量的系数小于0,所以­y随x的增大而减小,图象自左向右是下降的;当x<2时,y>0. 概括:对于一次函数y=kx+b,图象与x轴交点的横坐标就是方程kx+b=0的­解;图象位于x轴上方部分对应的x的取值范围就是不等式kx+b>0的解集;图象位于x­轴下方部分对应的x的取值范围就是不等式kx+b<0的解集. 互动5 师:利用本节课所学的知识,现在你能解答本课开始提出的问题吗? 师:这里涉及两个费用(学校自刻光盘费用和电脑公司刻录光盘费用),且­两个费用都与要刻录的光盘的张数有关,可以用两个函数分别表示这两个费用. 生:分组合作解决. 明确 设刻录的光盘有x张,学校自刻光盘和电脑公司刻录光盘的费用分别为­y1.y2元,则y1=4x+120,y2=8x.当y1>y2时,有4x+120>8x,解得x<30,表明需要刻录的­光盘少于30张时,由电脑公司自刻光盘费用较小;当y1<y2时,有4x+120<8x,解得x­>30,表明需要刻录的光盘多于30张时,由学校自刻光盘费用较小;当y1=y2时,有4x­+120=8x,解得x=30,表明需要刻录的光盘等于30张时,两种刻录光盘的方案的费用一­样多. 注:本题还可以借助图象法求解. 互动6 师:请同学们解答课本第45页的练习. 生:独立尝试后,同桌交流;推选两名代表进行板演. 明确 师生共同完善学生板演的结果. 查看更多

 

题目列表(包括答案和解析)

某物理兴趣小组的同学为探究导体电阻与导体长度和横截面积之间的定量关系,设计了如图甲所示的电路.实验时他们将所选的两种金属丝接入电路1和2的位置,通过比较电压表的示数来比较电阻丝的大小.现有几根康铜合金丝和镍铬合金丝,其规格如表所示:

编号
材料
长度(m)
横截面积
(mm2
A
镍铬合
0.3
0.5
B
镍铬合金
0.6
0.5
C
镍铬合金
0.3
1.0
D
康铜丝
0.3
0.5
E
康铜丝
0.3
1.0
F
康铜丝
0.8
0.8
(1)在探究导体电阻与导体长度之间的定量关系时,他们将编号为    两根金属丝对应接入电路1和2的位置,当发现电压表示数U1:U2接近      时,可以初步判定:在导体的材料和横截面积相同的条件下,导体的电阻与其长度成正比.
(2)在探究过程中,如果将编号为A和C两根金属丝接入电路1和2的位置,则他们想探究的是导体电阻与   之间的定量关系.
(3)在“交流与合作”时,有位同学提出:用如图乙所示的电路,将所选的金属丝分别接入电路M、N之间,读出电流,然后利用电流跟电阻之间的反比关系,也能探究导体电阻与导体长度和横截面积之间的定量关系.你认为他的实验方法合理吗?请说明理由.

查看答案和解析>>

一件工作甲独完成需a小时,乙单独完成需b小时,甲、乙两个合作完成这件工作需要的时间为(  )
A、
1
a+b
小时
B、
ab
a+b
小时
C、(
1
a
+
1
b
)
小时
D、
1
ab
小时

查看答案和解析>>

一项工程,甲单独做a天可以完成,乙单独做b天可以完成,那么甲、乙合作,一天可以完成的工作量为(  )
A、
1
a+b
B、
1
a
+
1
b
C、
1
1
a
+
1
b
D、
1
ab

查看答案和解析>>

九(1)班数学课题学习小组,为了研究学习二次函数问题,他们经历了实践--应用--探究的过程:
(1)实践:他们对一条公路上横截面为拋物线的单向双车道的隧道(如图①)进行测量,测得一隧道的路面宽为10m,隧道顶部最高处距地面6.25m,并画出了隧道截面图,建立了如图②所示的直角坐标系,请你求出抛物线的解析式;
(2)应用:按规定机动车辆通过隧道时,车顶部与隧道顶部在竖直方向上的高度差至少为0.5m,为了确保安全,问该隧道能否让最宽3m,最高3.5m的两辆厢式货车居中并列行驶(两车并列行驶时不考虑两车间的空隙)?
(3)探究:该课题学习小组为进一步探索抛物线的有关知识,他们借助上述拋物线模型,提出了以下两个问题,请予解答:
I.如图③,在抛物线内作矩形ABCD,使顶点C、D落在拋物线上,顶点A、B落在x轴上,设矩形ABCD的周长为l求l的最大值;
II.如图④,过原点作一条y=x的直线OM,交抛物线于点M,交抛物线对称轴于点N,P 为直线0M上一动点,过P点作x轴的垂线交抛物线于点Q,问在直线OM上是否存在点P,使以P、N、Q为顶点的三角形是等腰直角三角形?若存在,请求出P点的坐标;若不存在,请说明理由。

查看答案和解析>>

一件工作甲独完成需a小时,乙单独完成需b小时,甲、乙两个合作完成这件工作需要的时间为(  )
A.
1
a+b
小时
B.
ab
a+b
小时
C.(
1
a
+
1
b
)
小时
D.
1
ab
小时

查看答案和解析>>


同步练习册答案