由于对应边成比例.对应角相等是两个相似三角形的特征.如果两个三角形的对应边成比例.对应角相等.那么他们就是相似三角形.这也是识别两个三角形相似的方法.1.课本73页练习第1题 查看更多

 

题目列表(包括答案和解析)

等边△ABC边长为6,PBC边上一点,∠MPN=60°,且PMPN分别于边ABAC交于点EF.(1)如图1,当点PBC的三等分点,且PEAB时,判断△EPF的形状;

(2)如图2,若点PBC边上运动,且保持PEAB,设BP=x,四边形AEPF面积的y,求yx的函数关系式,并写出自变量x的取值范围;

(3)如图3,若点PBC边上运动,且∠MPN绕点P旋转,当CF=AE=2时,求PE的长.

【解析】(1)要证三角形EPF是等边三角形,已知了∠EPF=60°,主要再证得PE=PF即可,可通过证三角形PBE和PFC全等来得出结论,再证明全等过程中,可通过证明FP⊥BC和BE=PC来实现;

(2)根据△ABC的面积-△BEP的面积-△CFP的面积=四边形AEPF面积求解

(3)由相似三角形的判定定理得出△BPE∽△CFP,设BP=x,则CP=6-x,由相似三角形的对应边成比例可求出x的值,再根据勾股定理求出PE的值即可

 

查看答案和解析>>

等边△ABC边长为6,PBC边上一点,∠MPN=60°,且PMPN分别于边ABAC交于点EF.(1)如图1,当点PBC的三等分点,且PEAB时,判断△EPF的形状;

(2)如图2,若点PBC边上运动,且保持PEAB,设BP=x,四边形AEPF面积的y,求yx的函数关系式,并写出自变量x的取值范围;

(3)如图3,若点PBC边上运动,且∠MPN绕点P旋转,当CF=AE=2时,求PE的长.

【解析】(1)要证三角形EPF是等边三角形,已知了∠EPF=60°,主要再证得PE=PF即可,可通过证三角形PBE和PFC全等来得出结论,再证明全等过程中,可通过证明FP⊥BC和BE=PC来实现;

(2)根据△ABC的面积-△BEP的面积-△CFP的面积=四边形AEPF面积求解

(3)由相似三角形的判定定理得出△BPE∽△CFP,设BP=x,则CP=6-x,由相似三角形的对应边成比例可求出x的值,再根据勾股定理求出PE的值即可

 

查看答案和解析>>

如图(1),△ABC与△EFD为等腰直角三角形,ACDE重合,AB=AC=EF=3,∠BAC=∠DEF=90º,固定△ABC,将△DEF绕点A顺时针旋转,当DF边与AB边重合时,旋转中止.现不考虑旋转开始和结束时重合的情况,设DEDF(或它们的延长线)分别交BC(或它的延长线) 于GH点,如图(2)

 

 

(1)问:始终与△AGC相似的三角形有                       

(2)设CG=xBH=y,求y关于x的函数关系式(只要求根据图(2)的情形说明理由);

(3)问:当x为何值时,△AGH是等腰三角形。

【解析】(1)根据△ABC与△EFD为等腰直角三角形,AC与DE重合,利用相似三角形的判定定理即可得出结论.

(2)由△AGC∽△HAB,利用其对应边成比例列出关于x、y的关系式:3:y=x:3即可.

(3)此题要采用分类讨论的思想,当CG<1/2BC时,当CG=1/2BC时,当CG>1/2BC时分别得出即可

 

查看答案和解析>>

如图(1),△ABC与△EFD为等腰直角三角形,ACDE重合,AB=AC=EF=3,∠BAC=∠DEF=90º,固定△ABC,将△DEF绕点A顺时针旋转,当DF边与AB边重合时,旋转中止.现不考虑旋转开始和结束时重合的情况,设DEDF(或它们的延长线)分别交BC(或它的延长线) 于GH点,如图(2)

 

 

(1)问:始终与△AGC相似的三角形有                        

(2)设CG=xBH=y,求y关于x的函数关系式(只要求根据图(2)的情形说明理由);

(3)问:当x为何值时,△AGH是等腰三角形。

【解析】(1)根据△ABC与△EFD为等腰直角三角形,AC与DE重合,利用相似三角形的判定定理即可得出结论.

(2)由△AGC∽△HAB,利用其对应边成比例列出关于x、y的关系式:3:y=x:3即可.

(3)此题要采用分类讨论的思想,当CG<1/2BC时,当CG=1/2BC时,当CG>1/2BC时分别得出即可

 

查看答案和解析>>


同步练习册答案