判定一个直角三角形.除了可根据定义去证明它有一个直角外.还可以采用勾股定理的逆定理.即去证明三角形两条较短边的平方和等于较长边的平方.这是代数方法在几何中的应用. e线聚焦 [例]如图.已知四边形ABCD中.∠B=90°.AB=3.BC=4.CD=12.AD=13.求四边形ABCD的面积. 分析:根据题目所给数据特征.联想勾股数.连接AC.可实现四边形向三角形转化.并运用勾股定理的逆定理可判定△ACD是直角三角形. 解:连接AC.在Rt△ABC中. AC2=AB2+BC2=32+42=25. ∴ AC=5. 在△ACD中.∵ AC2+CD2=25+122=169. 而 AB2=132=169. ∴ AC2+CD2=AB2.∴ ∠ACD=90°. 故S四边形ABCD=S△ABC+S△ACD=AB·BC+AC·CD=×3×4+×5×12=6+30=36. 双基淘宝 u 仔细读题.一定要选择最佳答案哟! 查看更多

 

题目列表(包括答案和解析)

我们给出如下定义:如果一个直角三角形的斜边与另一个直角三角形的一边重合,且两个三角形不重叠,我们称这两个直角三角形是一对“伴侣三角形”,由这两个直角三角形拼成的四边形我们称为“美的四边形”.并且称这两个三角形重合的边为“美的四边形”的宽,另一条对角线叫“美的四边形”的长.解答下列问题:
(1)判断图1是不是“美的四边形”?
(2)如图2,在8×8的正方形网格中,给定一个Rt△ABC,请你补上一个格点D,使以A、B、C、D为顶点的四边形是一个“美的四边形”(画出一个即可),并回答这样的点D共有几个?
(3)如图3,根据图中已知条件求“美的四边形”的长.(如有需要可使用562+482=5440)
精英家教网

查看答案和解析>>

我们给出如下定义:如果一个直角三角形的斜边与另一个直角三角形的一边重合,且两个三角形不重叠,我们称这两个直角三角形是一对“伴侣三角形”,由这两个直角三角形拼成的四边形我们称为“美的四边形”.并且称这两个三角形重合的边为“美的四边形”的宽,另一条对角线叫“美的四边形”的长.解答下列问题:
(1)判断图1是不是“美的四边形”?
(2)如图2,在8×8的正方形网格中,给定一个Rt△ABC,请你补上一个格点D,使以A、B、C、D为顶点的四边形是一个“美的四边形”(画出一个即可),并回答这样的点D共有几个?
(3)如图3,根据图中已知条件求“美的四边形”的长.(如有需要可使用562+482=5440)

查看答案和解析>>

我们给出如下定义:如果一个直角三角形的斜边与另一个直角三角形的一边重合,且两个三角形不重叠,我们称这两个直角三角形是一对“伴侣三角形”,由这两个直角三角形拼成的四边形我们称为“美的四边形”.并且称这两个三角形重合的边为“美的四边形”的宽,另一条对角线叫“美的四边形”的长.解答下列问题:
(1)判断图1是不是“美的四边形”?
(2)如图2,在8×8的正方形网格中,给定一个Rt△ABC,请你补上一个格点D,使以A、B、C、D为顶点的四边形是一个“美的四边形”(画出一个即可),并回答这样的点D共有几个?
(3)如图3,根据图中已知条件求“美的四边形”的长.(如有需要可使用562+482=5440)

查看答案和解析>>

我们给出如下定义:如果一个直角三角形的斜边与另一个直角三角形的一边重合,且两个三角形不重叠,我们称这两个直角三角形是一对“伴侣三角形”,由这两个直角三角形拼成的四边形我们称为“美的四边形”.并且称这两个三角形重合的边为“美的四边形”的宽,另一条对角线叫“美的四边形”的长.解答下列问题:
(1)判断图1是不是“美的四边形”?
(2)如图2,在8×8的正方形网格中,给定一个Rt△ABC,请你补上一个格点D,使以A、B、C、D为顶点的四边形是一个“美的四边形”(画出一个即可),并回答这样的点D共有几个?
(3)如图3,根据图中已知条件求“美的四边形”的长.(如有需要可使用562+482=5440)

查看答案和解析>>

根据我国古代《周髀算经》记载,公元前1120年商高对周公说,将一根直尺折成一个直角,两端连接得到一个直角三角形,如果勾是3,股是4,那么弦就等于5,后人概括为“勾三、股四、弦五”.
(1)观察:①3,4,5;②5,12,13;③7,24,25;…发现这些勾股数的勾都是奇数,且从3起就没有间断过,并且
1
2
(9-1)=4,
1
2
(9+1)=5和
1
2
(25-1)=12,
1
2
(25+1)=13
发现规律:勾为n(n≥3,且n为奇数)时有:股=
1
2
(n2-1),弦=
1
2
(n2+1)分别写出能表示7,24,25的股和弦的算式?
(2)根据(1)的规律,用n(n为奇数,且n≥3)的代数式来表示所有这些勾股数的勾,股,弦,合理猜想它们之间的两种等量关系并对其中一种猜想加以证明?
(3)继续观察①4,3,5;②6,8,10;②8,15,17;…可以发现各组的第一个数都是偶数,且从4起也没有间断过,运用类似上述的探索的方法,直接用m(m为偶数,且m≥4)的代数式来表示它们的股和弦.

查看答案和解析>>


同步练习册答案