观察质疑:平行四边形如何区别于一般的四边形. 让学生自己归纳定义:有两组对边分别平行的四边形叫做平行四边形引入概念: A 2.引入平行四边形对边.邻边.对角.邻角.对角线等概念. 查看更多

 

题目列表(包括答案和解析)

(2012•资阳)如图,△ABC是等腰三角形,点D是底边BC上异于BC中点的一个点,∠ADE=∠DAC,DE=AC.运用这个图(不添加辅助线)可以说明下列哪一个命题是假命题?(  )

查看答案和解析>>

(2012•包头)已知下列命题:
①若a≤0,则|a|=-a;
②若ma2>na2,则m>n;
③两组对角分别相等的四边形是平行四边形;
④垂直于弦的直径平分弦.
其中原命题与逆命题均为真命题的个数是(  )

查看答案和解析>>

如图甲,MN是平行四边形ABCD外的一条直线,AA′、BB′、CC′、DD′都垂直于MN,A′、B′、C′、D′为垂足.对角线AC与BD相交于O点,O′是B′D′的中点.
(1)求证:OO′是梯形AA′C′C的中位线.
(2)求证:AA′+CC′=BB′+DD′.
(3)若直线MN向上移动,使点C在直线一侧,A、B、D在直线另一侧(如图乙),则垂线段AA′、BB′、CC′、DD′之间存在什么关系?写出你的猜想并证明.

查看答案和解析>>

4、下列命题中,真命题是(  )

查看答案和解析>>

29、先阅读理解两条正确结论,并用这两条结论完成应用与探究.阅读:
正确结论1.在图甲△ABC中,如果D是AB的中点,DE∥BC交AC于点E,那么E也是AC的中点,及DE是中位线.
正确结论2.在图乙梯形ABCD中,如果E为腰AB的中点且EF∥AD∥BC.那么F也是CD的中点,及EF是中位线.
应用:如图丙,已知,MN是平行四边形ABCD外的一条直线,AA′、BB′、CC′、DD′都垂直于MN,A′、B′、C′、D′为垂足.求证:AA′+CC′=BB′+DD′.
探究:如图丁,若直线MN向上移动,使点C在直线一侧,A、B、D三点在直线另一侧,则垂线段AA′、BB′、CC′、DD′之间存在什么关系?先对结论进行猜想,然后加以证明.

查看答案和解析>>


同步练习册答案