2.提高学生对角平分线性质和判别在实际生活中的应用能力. 查看更多

 

题目列表(包括答案和解析)

阅读下列材料,然后解答后面的问题.
我们知道方程2x+3y=12有无数组解,但在实际生活中我们往往只需要求出其正整数解.例:由2x+3y=12,得y=
12-2x
3
=4-
2
3
x
,(x、y为正整数)∴
x>0
12-2x>0
则有0<x<6.又y=4-
2
3
x
为正整数,则
2
3
x
为正整数.
由2与3互质,可知:x为3的倍数,从而x=3,代入y=4-
2
3
x=2

∴2x+3y=12的正整数解为
x=3
y=2

问题:
(1)请你写出方程2x+y=5的一组正整数解:
 

(2)若
6
x-2
为自然数,则满足条件的x值有
 
个;
A、2      B、3       C、4        D、5
(3)七年级某班为了奖励学习进步的学生,购买了单价为3元的笔记本与单价为5元的钢笔两种奖品,共花费35元,问有几种购买方案?

查看答案和解析>>

18、“在一次考试中,考生有2万多名,如果为了得到这些考生的数学成绩的平均水平,若将他们的成绩全部相加再除以考生的总数,那将是十分麻烦的,那么怎样才能了解这些考生的数学平均成绩呢”“通常,在考生很多的情况下,我们是从中抽取部分考生(比如500名)的成绩,用他们的平均成绩去估计所有考生的平均成绩.”
在上述文字表述中,提到了调查的两种方式是
抽样调查
全面调查
;反映了用样本估计总体的数学思想,其中,总体是
2万多名考生的数学平均成绩
,样本是
500名考生的数学平均成绩
,请用较简洁的语言,举一个在实际生活中,运用同种思想解决问题的例子,写在下面:
为了了解某市1万多名初三毕业生的数学平均成绩,从中抽取500名考生的数学成绩,用他们的平均成绩去估计所有考生的平均成绩.

查看答案和解析>>

19、在一次考试中,考生有2万多名,如果为了得到这些考生的数学成绩的平均水平,若将他们的成绩全部相加再除以考生的总数,那将是十分麻烦的,那么怎样才能了解这些考生的数学,平均成绩呢?
通常,在考生很多的情况下,我们是从中抽取部分考生(比如500名)的成绩,用他们的平均成绩去估计所有考生的平均成绩.在上述文字表述中,提到了调查的两种方式是
全面调查
抽样调查
;反映了用样本估计总体的数学思想.其中,总体是
2万多名考生的数学平均成绩的全体
,样本是
从中抽取的部分考生的数学平均成绩
,请用较简洁的语言,举一个在实际生活中,运用同种思想解决问题的例子,写在下面:
比如中央电视台要想调查北京观众对《星光大道》节目的收视率,从北京的不同地方,不同层次,不同年龄段,不同文化背景的观众中共抽取10000名观众加以调查,用他们的收视率来代表北京市所有市民对节目的收视率.

查看答案和解析>>

在实际生活中,平行线的“影子”很多很多,如图1,笔直的两条铁轨和一条条枕木都给我们平行线的形象.在你的身边,还有哪些平行线的实例?不妨举出两个.图2是以多组平行线设计的图案,请你展开自己的想象力利用平行线设计一幅美丽的图案.

查看答案和解析>>

阅读下列材料,然后解答后面的问题。
我们知道方程有无数组解,但在实际生活中我们往往只需要求出其正整数解。例:由,得,(为正整数)       则有.
为正整数,则为正整数.
由2与3互质,可知:为3的倍数,从而,代入.
的正整数解为
问题:(1)请你写出方程的一组正整数解:            
(2)若为自然数,则满足条件的值有­            

A.2B.3C.4D.5
(3)七年级某班为了奖励学习进步的学生,购买了单价为3元的笔记本与单价为5元的钢笔两种奖品,共花费35元,问有几种购买方案?

查看答案和解析>>


同步练习册答案