巩固勾股定理.熟练运用勾股定理. 查看更多

 

题目列表(包括答案和解析)

22、如图,△ABC中,已知∠BAC=45°,AD⊥BC于D,BD=2,DC=3,求AD的长.
小萍同学灵活运用轴对称知识,将图形进行翻折变换,巧妙地解答了此题.
请按照小萍的思路,探究并解答下列问题:
(1)分别以AB、AC为对称轴,画出△ABD、△ACD的轴对称图形,D点的对称点为E、F,延长EB、FC相交于G点,证明四边形AEGF是正方形;
(2)设AD=x,利用勾股定理,建立关于x的方程模型,求出x的值.

查看答案和解析>>

22、如图,△ABC中,已知∠BAC=45°,AD⊥BC于D,BD=4,DC=6,求AD的长.
小萍同学灵活运用轴对称知识,将图形进行翻折变换,巧妙地解答了此题.
请按照小萍的思路,探究并解答下列问题:
(1)分别以AB、AC为对称轴,画出△ABD、△ACD的轴对称图形,D点的对称点为E、F,延长EB、FC相交于G点,证明四边形AEGF是正方形;
(2)设AD=x,利用勾股定理,建立关于x的方程模型,求出x的值.

查看答案和解析>>

勾股定理:如果直角三角形的两条直角边分别为a、b,斜边为c,那么a、b、c一定满足
 
.在运用勾股定理进行计算时,除了会用a2+b2=c2外,还要掌握几种变形形式,如:a=
 
,b=
 

查看答案和解析>>

已知,如图,正方形ABCD中,点E、F分别在边BC、CD上,且∠EAF=45°,AG⊥EF于G,EG=2,FG=3,求AG的边长.小萍同学灵活运用旋转的知识,将图形进行旋转变换,巧妙地解答了此题.请按照小萍的思路,探究并解答下列问题:
(1)把△ADF绕点A顺时针旋转90°,得△ABH,请在图中画出旋转后的图形;
(2)判断H、B、E三点是否在一条直线上,若在,请证明:△AEF≌△AEH;若不在,请说明理由;
(3)设AG=x,利用勾股定理,建立关于x的方程模型,求出x的值.

查看答案和解析>>

如图(1)是用硬纸板做成的两个全等的直角三角形,两直角边的长分别为a和b,斜边长为c.图(2)是以c为直角边的等腰直角三角形.请你开动脑筋,将它们拼成一个能证明勾股定理的图形.
(1)画出拼成的这个图形的示意图,指出它是什么图形;
(2)用这个图形证明勾股定理;
(3)假设图(1)中的直角三角形有若干个,你能运用图(1)中所给的直角三角形精英家教网拼出另一种能证明勾股定理的图形吗?请在图(3)中画出拼后的示意图(无需证明).

查看答案和解析>>


同步练习册答案