3.我们发现.当AB的长(x)确定后.矩形的面积(y)也随之确定. y是x的函数.试写出这个函数的关系式. 对于1..可让学生根据表中给出的AB的长.填出相应的BC的长和面积.然后引导学生观察表格中数据的变化情况.提出问题:(1)从所填表格中.你能发现什么?(2)对前面提出的问题的解答能作出什么猜想?让学生思考.交流.发表意见.达成共识:当AB的长为5cm.BC的长为10m时.围成的矩形面积最大,最大面积为50m2. 对于2.可让学生分组讨论.交流.然后各组派代表发表意见.形成共识.x的值不可以任意取.有限定范围.其范围是0 <x <10. 对于3.教师可提出问题.(1)当AB=xm时.BC长等于多少m?(2)面积y等于多少?并指出y=x就是所求的函数关系式. 查看更多

 

题目列表(包括答案和解析)

精英家教网如图,在平面直角坐标系xoy中,已知矩形ABCD的边AB、AD分别在x轴、y轴上,点A与坐标原点重合,且AB=2,AD=1.
操作:将矩形ABCD折叠,使点A落在边DC上.
探究:
(1)我们发现折痕所在的直线与矩形的两边一定相交,那么相交的情形有几种请你画出每种情形的图形;(只要用矩形草稿纸动手折一折你会有发现的!)
(2)当折痕所在的直线与矩形的边OD相交于点E,与边OB相交于点F时,设直线的解析式为y=kx+b.
①求b与k的函数关系式;
②求折痕EF的长(用含k的代数式表示),并写出k的取值范围.

查看答案和解析>>

(2007•咸宁)如图,在平面直角坐标系xoy中,已知矩形ABCD的边AB、AD分别在x轴、y轴上,点A与坐标原点重合,且AB=2,AD=1.
操作:将矩形ABCD折叠,使点A落在边DC上.
探究:
(1)我们发现折痕所在的直线与矩形的两边一定相交,那么相交的情形有几种请你画出每种情形的图形;(只要用矩形草稿纸动手折一折你会有发现的!)
(2)当折痕所在的直线与矩形的边OD相交于点E,与边OB相交于点F时,设直线的解析式为y=kx+b.
①求b与k的函数关系式;
②求折痕EF的长(用含k的代数式表示),并写出k的取值范围.

查看答案和解析>>

如图,在平面直角坐标系xoy中,已知矩形ABCD的边AB、AD分别在x轴、y轴上,点A与坐标原点重合,且AB=2,AD=1.
操作:将矩形ABCD折叠,使点A落在边DC上.
探究:
(1)我们发现折痕所在的直线与矩形的两边一定相交,那么相交的情形有几种请你画出每种情形的图形;(只要用矩形草稿纸动手折一折你会有发现的!)
(2)当折痕所在的直线与矩形的边OD相交于点E,与边OB相交于点F时,设直线的解析式为y=kx+b.
①求b与k的函数关系式;
②求折痕EF的长(用含k的代数式表示),并写出k的取值范围.

查看答案和解析>>

(2007•咸宁)如图,在平面直角坐标系xoy中,已知矩形ABCD的边AB、AD分别在x轴、y轴上,点A与坐标原点重合,且AB=2,AD=1.
操作:将矩形ABCD折叠,使点A落在边DC上.
探究:
(1)我们发现折痕所在的直线与矩形的两边一定相交,那么相交的情形有几种请你画出每种情形的图形;(只要用矩形草稿纸动手折一折你会有发现的!)
(2)当折痕所在的直线与矩形的边OD相交于点E,与边OB相交于点F时,设直线的解析式为y=kx+b.
①求b与k的函数关系式;
②求折痕EF的长(用含k的代数式表示),并写出k的取值范围.

查看答案和解析>>

如图,在平面直角坐标系xoy中,已知矩形ABCD的边AB、AD分别在x轴、y轴上,点A与坐标原点重合,且AB=2,AD=1.
操作:将矩形ABCD折叠,使点A落在边DC上.
探究:
(1)我们发现折痕所在的直线与矩形的两边一定相交,那么相交的情形有几种请你画出每种情形的图形;(只要用矩形草稿纸动手折一折你会有发现的!)
(2)当折痕所在的直线与矩形的边OD相交于点E,与边OB相交于点F时,设直线的解析式为y=kx+b.
①求b与k的函数关系式;
②求折痕EF的长(用含k的代数式表示),并写出k的取值范围.

查看答案和解析>>


同步练习册答案