4.教师引导学生观察函数图象.回答(1)提出的问题.得到图象与x轴交点的坐标分别是. 查看更多

 

题目列表(包括答案和解析)

46、骆驼被称为“沙漠之舟”,它的体温随时间的变化而变化,如图是骆驼48小时的体温随时间变化的函数图象.观察函数图象并回答:

(1)第一天中,骆驼体温的变化范围是
35
℃~
40
℃,它的体温从最低到最高经过了
12
小时.
(2)从16时到24时,骆驼的体温下降了
3
℃.这两天中在
4时~6时和28时~40时
范围内骆驼的体温在上升,在
0时~4时、16时~28时和40时~48时
范围内骆驼的体温在下降.

查看答案和解析>>

给出函数y=x+
1
x

(1)写出自变量x的取值范围;
(2)请通过列表、描点、连线画出这个函数的图象;
①列表:
 x -4 -3 -2  -1  -
1
2
 
-
1
3
 
-
1
4
 
1
4
1
3
 
 
1
2
 1  3  4
 y                            
②描点(在下面给出的直角坐标中描出上表对应的各点):
精英家教网
③连线(将上图中描出的各点用平滑曲线连接起来,得到函数图象)
(3)观察函数图象,回答下列问题:
①函数图象在第
 
象限;
②函数图象的对称性是(
 

A.既是轴对称图形,又是中心对称图形
B.只是轴对称图形,不是中心对称图形
C.不是轴对称图形,而是中心对称图形
D.既不是轴对称图形,也不是中心对称图形
③在x>0时,当x=
 
时,函数y有最
 
(大,小)值,且这个最值等于
 

在x<0时,当x=
 
时,函数y有最
 
(大,小)值,且这个最值等于
 

④在第一象限内,x在什么范围内,y随着x增大而减小,x在什么范围内,y随x增
大而增大;
(4)方程x+
1
x
=-2x+1
是否有实数解?说明理由.

查看答案和解析>>

(2012•南昌模拟)绘制函数y=x+
1
x
的图象,我们经历了如下过程:确定自变量x的取值范围是x≠0; 列表--描点--连线,得到该函数的图象如图所示.
x -4 -3 -2 -1 -
1
2
-
1
3
-
1
4
1
4
1
3
1
2
1 2 3 4
y -4
1
4
-3
1
3
-2
1
2
-2 -2
1
2
-3
1
3
-4
1
4
4
1
4
3
1
3
2
1
2
2 2
1
2
3
1
3
4
1
4
观察函数图象,回答下列问题:
(1)函数图象在第
一、三
一、三
象限;
(2)函数图象的对称性是
C
C

A.既是轴对称图形,又是中心对称图形     B.只是轴对称图形,不是中心对称图形
C.不是轴对称图形,而是中心对称图形     D.既不是轴对称图形,也不是中心对称图形
(3)在x>0时,当x=
1
1
时,函数y有最
(大,小)值,且这个最值等于
2
2

在x<0时,当x=
-1
-1
时,函数y有最
(大,小)值,且这个最值等于
-2
-2

(4)方程x+
1
x
=-2x+1
是否有实数解?说明理由.

查看答案和解析>>

给出函数
(1)写出自变量x的取值范围;
(2)请通过列表、描点、连线画出这个函数的图象;
①列表:
 x-4-3-2 -1 - - -    1 3 4
 y              
②描点(在下面给出的直角坐标中描出上表对应的各点):

③连线(将上图中描出的各点用平滑曲线连接起来,得到函数图象)
(3)观察函数图象,回答下列问题:
①函数图象在第______象限;
②函数图象的对称性是(______)
A.既是轴对称图形,又是中心对称图形
B.只是轴对称图形,不是中心对称图形
C.不是轴对称图形,而是中心对称图形
D.既不是轴对称图形,也不是中心对称图形
③在x>0时,当x=______时,函数y有最______(大,小)值,且这个最值等于______;
在x<0时,当x=______时,函数y有最______(大,小)值,且这个最值等于______;
④在第一象限内,x在什么范围内,y随着x增大而减小,x在什么范围内,y随x增
大而增大;
(4)方程是否有实数解?说明理由.

查看答案和解析>>

某市自来水公司为了鼓励市民节约用水,采取分段收费标准,某市居民每月交水费y(元)与水量x(吨)的函数关系如图所示,请你通过观察函数图象,回答自来水公司收费标准:若用水不超过5吨,水费为      元/吨;若用水超过5吨,超过部分的水费为     元/吨。

查看答案和解析>>


同步练习册答案