知识背景:有理数的加法运算法则和符号法则. 能力背景:熟练的进行有理数的加法运算. 预测目标:在有理数加法计算的基础上学习有理数的乘法 查看更多

 

题目列表(包括答案和解析)

类比学习:一动点沿着数轴向右平移3个单位,再向左平移2个单位,相当于向右平移1个单位。用有理数加法表示为3+(-2)=1。    若坐标平面上的点做如下平移:沿x轴方向平移的数量为a(向右为正,向左为负,平移个单位),沿y轴方向平移的数量为b(向上为正,向下为负,平移个单位),则把有序数对{a,b}叫做这一平移的“平移量”;“平移量”{a,b}与“平移量”{c,d}的加法运算法则为

    解决问题:

1.计算:{3,1}+{1,-2};

2.动点P从坐标原点O出发,先按照“平移量”{3,1}平移到A,再按照“平移量”

{1,2}平移到B;若先把动点P按照“平移量”{1,2}平移到C,再按照“平移量”

{3,1}平移,最后的位置还是点B吗? 在图1中画出四边形OABC。

3.如图2,一艘船从码头O出发,先航行到湖心岛码头P(2,3),再从码头P航行到码头Q(5,5),最后回到出发点O. 请用“平移量”加法算式表示它的航行过程。

 

查看答案和解析>>

类比学习:一动点沿着数轴向右平移3个单位,再向左平移2个单位,相当于向右平移1个单位。用有理数加法表示为3+(-2)=1。   若坐标平面上的点做如下平移:沿x轴方向平移的数量为a(向右为正,向左为负,平移个单位),沿y轴方向平移的数量为b(向上为正,向下为负,平移个单位),则把有序数对{a,b}叫做这一平移的“平移量”;“平移量”{a,b}与“平移量”{c,d}的加法运算法则为
解决问题:
【小题1】计算:{3,1}+{1,-2};
【小题2】动点P从坐标原点O出发,先按照“平移量”{3,1}平移到A,再按照“平移量”
{1,2}平移到B;若先把动点P按照“平移量”{1,2}平移到C,再按照“平移量”
{3,1}平移,最后的位置还是点B吗? 在图1中画出四边形OABC。
【小题3】如图2,一艘船从码头O出发,先航行到湖心岛码头P(2,3),再从码头P航行到码头Q(5,5),最后回到出发点O. 请用“平移量”加法算式表示它的航行过程。

查看答案和解析>>

27、对于有理数a、b,定义运算:“?”,a?b=a•b-a-b-2.
(1)计算:(-2)?3的值;
(2)填空:4?(-2)
=
(-2)?4(填“>”或“=”或“<”);
(3)我们知道:有理数的加法运算和乘法运算满足交换律.那么,由(2)计算的结果,你认为这种运算:“?”是否满足交换律?若满足,请说明理由;若不满足,为什么?

查看答案和解析>>

在有理数的原有运算法则中,我们补充定义新运算“⊕”如下:a⊕b=a2+ab+b.则(-2)⊕2的值为
2
2

查看答案和解析>>

类比学习:一动点沿着数轴向右平移3个单位,再向左平移2个单位,相当于向右平移1个单位.用实数加法表示为3+(-2)=1.
若坐标平面上的点作如下平移:沿x轴方向平移的数量为a(向右为正,向左为负,平移|a|个单位),沿y轴方向平移的数量为b(向上为正,向下为负,平移|b|个单位),则把有序数对{a,b}叫做这一平移的“平移量”;“平移量”{a,b}与“平移量”{c,d}的加法运算法则为{a,b}+{c,d}={a+c,b+d}.
解决问题:
(1)计算:{3,1}+{1,2};{1,2}+{3,1};
(2)①动点P从坐标原点O出发,先按照“平移量”{3,1}平移到A,再按照“平移量”
{1,2}平移到B;若先把动点P按照“平移量”{1,2}平移到C,再按照“平移量”
{3,1}平移,最后的位置还是点B吗?在图1中画出四边形OABC.
②证明四边形OABC是平行四边形.
(3)如图2,一艘船从码头O出发,先航行到湖心岛码头P(2,3),再从码头P航行到码头Q(5,5),最后回到出发点O.请用“平移量”加法算式表示它的航行过程.
精英家教网

查看答案和解析>>


同步练习册答案