1.情境创设 本课时的教学内容是勾股定理在数学内部的应用.课本设计用勾股定理探索一些无理数的活动.与本章第1节的“实验 .第2节的“由古巴比伦泥板上的一组数画三角形 相类似.都是为了使学生不断地感受“数 与“形 的内在联系.感受数学的整体性. 查看更多

 

题目列表(包括答案和解析)

12、我们给出如下定义:若一个四边形中存在相邻两边的平方和等于一条对角线的平方,则称这个四边形为勾股四边形,这两条相邻的边称为这个四边形的勾股边.
(1)写出你所知道的四边形中是勾股四边形的两种图形的名称
正方形
矩形

(2)如图,将△ABC绕顶点B按顺时针方向旋转60°后得到△DBE,连接AD、DC,若∠DCB=30°,试证明;DC2+BC2=AC2.(即四边形ABCD是勾股四边形)

查看答案和解析>>

我们给出如下定义:若一个四边形中存在相邻两边的平方和等于一条对角线的平方,则称这个四边形为勾股四边形,这两条相邻的边称为这个四边形的勾股边.

(1)如图甲,已知格点(小正方形的顶点)O(0,0)A(3,0),B(0,4),请你画出以格点为顶点,OA、OB为勾股边且对角线相等的勾股四边形OAMB;
(2)如图乙,若C(1,2),那么在图中所有格点中是否能找到一点D,使以CA、CB为勾股边的四边形ACBD是勾股四边形.如果能找到,请写出D点的坐标(不需要证明);
(3)如图丙,AC、BD是四边形ABCD的两条对角线,△ABD是等边三角形,∠DCB=30°.求证:四边形ABCD是勾股四边形.

查看答案和解析>>

我们给出如下定义:若一个四边形中存在相邻两边的平方和等于一条对角线的平方,则称这个四边形为勾股四边形,这两条相邻的边称为这个四边形的勾股边.
(1)写出你所知道的四边形中是勾股四边形的两种图形的名称_________,________;
(2)如图,将△ABC绕顶点B按顺时针方向旋转60°后得到△DBE,连结AD、DC,若∠DCB=30°,试证明;DC2+BC2=AC2.(即四边形ABCD是勾股四边形)

查看答案和解析>>

我们给出如下定义:若一个四边形中存在相邻两边的平方和等于一条对角线的平方,则称这个四边形为勾股四边形,这两条相邻的边称为这个四边形的勾股边.
(1)写出你所知道的四边形中是勾股四边形的两种图形的名称______,______;
(2)如图,将△ABC绕顶点B按顺时针方向旋转60°后得到△DBE,连接AD、DC,若∠DCB=30°,试证明;DC2+BC2=AC2.(即四边形ABCD是勾股四边形)

精英家教网

查看答案和解析>>

我们给出如下定义:若一个四边形中存在相邻两边的平方和等于一条对角线的平方,则称这个四边形为勾股四边形,这两条相邻的边称为这个四边形的勾股边.

 (1)写出你所知道的四边形中是勾股四边形的两种图形的名称_________,________;

 (2)如图,将△ABC绕顶点B按顺时针方向旋转60°后得到△DBE,连结AD、DC,若∠DCB=30°.

试证明:DC2+BC2=AC2.(即四边形ABCD是勾股四边形)

查看答案和解析>>


同步练习册答案