设问题情境.引入新课 我们已学过一元一次方程kx+b=0 和一次函数y =kx+b 的关系.你还记得吗? 它们之间的关系是:当一次函数中的函数值y =0时.一次函数y =kx+b就转化成了一元一次方程kx+b=0.且一次函数的图像与x 轴交点的横坐标即为一元一次方程kx+b=0的解. 现在我们学习了一元二次方程和二次函数.它们之间是否也存在一定的关系呢?本节课我们将探索有关问题. 查看更多

 

题目列表(包括答案和解析)

如图是我们已学过的某种函数图象,它的函数解析式可能是(  )

查看答案和解析>>

如图是我们已学过的某种函数图象,它的函数解析式可能是


  1. A.
    y=x+2
  2. B.
    y=x2-4
  3. C.
    数学公式
  4. D.
    数学公式

查看答案和解析>>

阅读材料,并解答问题:
我们已经学过了一元一次不等式的解法,对于一些特殊的不等式,我们用作函数图象的方法求出它的解集,这也是《数学新课程标准》中所要求掌物的内容.例如:如何求不等式
3
x
>x+2的解集呢我们可以设y1=
3
x
,y2=x+2.然后求出它们的交点的坐标,并在同一直角坐标系中画出它们的函数图象,通过看图,可以发现此不等式的解集是“x<-3或0<x<1”
用上面的知识解决问题:求不等式x2-x>x+3的解集.
(1)设函数y1=
 
;y2=
 

(2)两个函数图象的交点坐标为
 

(3)在所给的直角坐标系中画出两个函数的图象(不要列表).
(4)观察发现:不等式x2-x>x+3的解集为
 

查看答案和解析>>

 阅读材料,并解答问题。 

我们已经学过了一元一次不等式的解法,对于一些特殊的不等式,我们用作函数图象的方法求出它的解集,这也是《数学新课程标准》中所要求掌物的内容。例如:如何求不等式﹥x+2的解集呢? 我们可以设=,=x+2.然后求出它们的交点的坐标, 并在同一直角坐标系中画出它们的函数图象,通过看图,可以发现此不等式的解集是“xく-3或0くxく1” 用上面的知识解决问题:求不等式x-x>x+3的解集. 

(1)设函数=              ,    =                    

(2)两个函数图象的交点坐标为                    

(3)在所给的直角坐标系中画出两个函数的图象(不要列表). 

(4)观察发现:不等式x-x>x+3的解集为               

 

查看答案和解析>>

阅读材料,并解答问题。 
我们已经学过了一元一次不等式的解法,对于一些特殊的不等式,我们用作函数图象的方法求出它的解集,这也是《数学新课程标准》中所要求掌物的内容。例如:如何求不等式﹥x+2的解集呢? 我们可以设=,=x+2.然后求出它们的交点的坐标, 并在同一直角坐标系中画出它们的函数图象,通过看图,可以发现此不等式的解集是“xく-3或0くxく1” 用上面的知识解决问题:求不等式x-x>x+3的解集. 
(1)设函数=              ,   =                    
(2)两个函数图象的交点坐标为                   
(3)在所给的直角坐标系中画出两个函数的图象(不要列表). 
(4)观察发现:不等式x-x>x+3的解集为               

查看答案和解析>>


同步练习册答案